DOI QR코드

DOI QR Code

PROBING GALAXY FORMATION MODELS IN COSMOLOGICAL SIMULATIONS WITH OBSERVATIONS OF GALAXY GROUPS

  • HABIB. G., KHOSROSHAHI (School of Astronomy, Institute for Research in Fundamental Sciences) ;
  • GOZALIASL, GHASSEM (School of Astronomy, Institute for Research in Fundamental Sciences) ;
  • FINOGUENOV, ALEXIS (Department of Physics, University of Helsinki) ;
  • RAOUF, MOJTABA (School of Astronomy, Institute for Research in Fundamental Sciences) ;
  • MIRAGHEE, HALIME (School of Astronomy, Institute for Research in Fundamental Sciences)
  • Received : 2014.11.30
  • Accepted : 2015.06.30
  • Published : 2015.09.30

Abstract

We use multi-wavelength observations of galaxy groups to probe the formation models for galaxy formation in cosmological simulations, statistically. The observations include Chandra and XMM-Newton X-ray observations, optical photometry and radio observations at 1.4 GHz and 610 MHz. Using a large sample of galaxy groups observed by the XMM-Newton X-ray telescope as part of the XMM-Large Scale Survey, we carried out a statistical study of the redshift evolution of the luminosity gap for a well defined mass-selected group sample and show the relative success of some of the semi-analytic models in reproducing the observed properties of galaxy groups up to redshift z ~ 1.2. The observed trend argues in favour of a stronger evolution of the feedback from active galactic nuclei at z < 1 compared to the models. The slope of the relation between the magnitude of the brightest cluster galaxy and the value of the luminosity gap does not evolve with redshift and is well reproduced by the models. We find that the radio power of giant elliptic galaxies residing in galaxy groups with a large luminosity gap are lower compared to giant ellipticals of the same stellar masses but in typical galaxy groups.

Keywords

References

  1. Adami, C., Mazure, A., & Pierre, M., et al., 2011, The XMM-LSS Survey: Optical Assessment and Properties of Different X-ray Selected Cluster Classes, A&A, 526, A18 https://doi.org/10.1051/0004-6361/201015182
  2. Alshino A., Khosroshahi H. G., Ponman T., Willis J., Pierre M., Pacaud F., & Smith G. P., 2009, MNRAS, 401, 941
  3. Birzan L., Rafferty D. A., McNamara B. R., Wise M. W., & Nulsen P. E. J., 2004, A Systematic Study of Radio-induced X-Ray Cavities in Clusters, Groups, and Galaxies, ApJ, 607, 800 https://doi.org/10.1086/383519
  4. Dariush A. A., Khosroshahi H. G., Ponman T. J., Pearce F., Raychaudhury S., & Hartly W., 2007, The Mass Assembly of Fossil Groups of Galaxies in the Millennium Simulation, MNRAS, 382, 433 https://doi.org/10.1111/j.1365-2966.2007.12385.x
  5. Dariush A. A., Raychaudhury S., Ponman T. J., Khosroshahi H. G., Benson A. J., Bower R. G., & Pearce F., 2010, The Mass Assembly of Galaxy Groups and the Evolution of the Magnitude Gap, MNRAS, 405, 1873
  6. De Lucia, G., & Blaizot, J., 2007, The Hierarchical Formation of the Brightest Cluster Galaxies, MNRAS , 375, 2 https://doi.org/10.1111/j.1365-2966.2006.11287.x
  7. Erben, T., Hildebrandt, H., & Miller, L., et al., 2013, CFHTLenS: the Canada-France-Hawaii Telescope Lensing Survey - imaging Data and Catalogue Products, MNRAS, 433, 2545 https://doi.org/10.1093/mnras/stt928
  8. Fabian A. C., ARA&A, 1994, 32, 277 https://doi.org/10.1146/annurev.aa.32.090194.001425
  9. Gozaliasl, G., Finoguenov, A., & Khosroshahi, H. G., et al., 2014, Mining the Gap: Evolution of the Magnitude Gap in X-ray Galaxy Groups from the 3-square-degree XMM Coverage of CFHTLS, A&A, 566, A140 https://doi.org/10.1051/0004-6361/201322459
  10. Gozaliasl, G., & Khosroshahi, H. G., et al., 2014, Evolution of the Galaxy Luminosity Function in Progenitors of Fossil Groups, A&A, 571, 49 https://doi.org/10.1051/0004-6361/201424075
  11. Guo, Q., White, S., Boylan-Kolchin, M., De Lucia, G., Kaumann, G., Lemson, G., Li C., Springel, V., & Weinmann, S., 2011, From Dwarf Spheroidals to cD galaxies: Simulating the Galaxy Population in a CDM Cosmology, MNRAS, 413, 101 https://doi.org/10.1111/j.1365-2966.2010.18114.x
  12. Jones L.R., Ponman T.J., Horton A., Babul A., Ebeling H., & Burke D.J., 2003, The Nature and Space Density of Fossil Groups of Galaxies, MNRAS, 343, 627 https://doi.org/10.1046/j.1365-8711.2003.06702.x
  13. Khosroshahi H. G., Jones L. R., & Ponman T. J., 2004, An Old Galaxy Group: Chandra X-ray Observations of the Nearby Fossil Group NGC 6482, MNRAS, 349, 1240 https://doi.org/10.1111/j.1365-2966.2004.07575.x
  14. Khosroshahi H. G., Ponman T. J., & Jones L. R., 2006, The Central Elliptical Galaxy in Fossil Groups and Formation of Brightest Cluster Galaxies, MNRAS,372, L68 https://doi.org/10.1111/j.1745-3933.2006.00228.x
  15. Khosroshahi, H.G., Ponman, T.J., & Jones, L.R., 2007, Scaling Relations in Fossil Galaxy Groups, MNRAS, 377, 595 https://doi.org/10.1111/j.1365-2966.2007.11591.x
  16. Le Fevre, O., et al., 2005, The VIMOS VLT Deep Survey. First Epoch VVDS-Deep Survey: 11 564 Spectra with 17.5 IAB 24, and the Redshift Distribution over 0 z 5, A&A, 439, 845 https://doi.org/10.1051/0004-6361:20041960
  17. Miraghaei, H., Khosroshahi, H. G., Klckner, H.-R., Ponman, T. J., Jetha, N. N., & Raychaudhury, S., 2014, IGM Heating and AGN activity in Fossil Galaxy Groups, IAUS, 304, 349
  18. Ponman T. J., Allan D. J., Jones L. R., Merrifield M., & MacHardy I. M., 1994, A Possible Fossil Galaxy Group, Nature, 369, 462 https://doi.org/10.1038/369462a0
  19. Pierre, M., et al., 2007, The XMM-Large Scale Structure Catalogue: X-ray Sources and Associated Optical Data. Version I, MNRAS, 382, 279 https://doi.org/10.1111/j.1365-2966.2007.12354.x
  20. Smith, Graham P., Khosroshahi, Habib G., Dariush, A., Sanderson, A. J. R., Ponman, T. J., Stott, J. P., Haines, C. P., Egami, E., & Stark, D. P., 2010, LoCuSS: Connecting the Dominance and Shape of Brightest Cluster Galaxies with the Assembly History of Massive Clusters, MNRAS, 409, 169 https://doi.org/10.1111/j.1365-2966.2010.17311.x
  21. Springel, V. and White, S. D. M. and Jenkins, A. and Frenk, C. S., Yoshida, N., Gao, L., Navarro, J., & Thacker, R., et al., 2005, Simulations of the Formation, Evolution and Clustering of Galaxies and Quasars, Nature, 435, 629 https://doi.org/10.1038/nature03597
  22. Raouf, M., Khosroshahi, H. G., Ponman, T. J., Dariush, A. A., Molaeinezhad, A., & Tavasoli, S., 2014, Ultimate Age-dating Method for Galaxy Groups; Clues from the Millennium Simulations, MNRAS, 442, 1578 https://doi.org/10.1093/mnras/stu963
  23. Sun, M., Forman, W., Vikhlinin, A., Hornstrup, A., Jones, C., & Murray, S. S., 2004, ESO 3060170: A Massive Fossil Galaxy Group with a Heated Gas Core?, ApJ, 612, 805 https://doi.org/10.1086/422801