• Title/Summary/Keyword: redox sensing

Search Result 29, Processing Time 0.022 seconds

Inactivation of the DevS Histidine Kinase of Mycobacterium smegmatis by the Formation of the Intersubunit Disulfide Bond (Subunit 간의 disulfide 결합 형성에 의한 Mycobacterium smegmatis DevS histidine kinase의 불활성화)

  • Lee, Jin-Mok;Park, Kwang-Jin;Kim, Min-Ju;Ko, In-Jeong;Oh, Jeong-Il
    • Journal of Life Science
    • /
    • v.20 no.6
    • /
    • pp.853-860
    • /
    • 2010
  • The DevSR two-component system is a major regulatory system involved in redox sensing in Mycobacterium smegmatis. The DevSR system consists of the DevS histidine kinase and its cognate DevR response regulator. When exposed to hypoxic conditions, the DevS histidine kinase is activated to phosphorylate the DevR response regulator, leading to the transcriptional activation of the DevR regulation. The ligand-binding state of the heme embedded in the N-terminal GAF domain of DevS determines the kinase activity of DevS. In this study, we demonstrated that the redox-responsive cysteine (C547) in the C-terminal kinase domain is involved in the redox-dependent control of DevS kinase activity. The formation of an intersubunit disulfide bond between the C547 residues in the presence of $O_2$ led to inactivation of DevS kinase activity. The reduction of the oxidized DevS with reductants such as $\beta$-mercaptoethanol and dithiothreitol resulted in the restoration of DevS kinase activity. It was demonstrated in vivo by complementation test that the substitution of C547 to alanine partially impaired the sensory function of DevS in M. smegmatis.

Thiol-Based Peroxidases and Ascorbate Peroxidases: Why Plants Rely on Multiple Peroxidase Systems in the Photosynthesizing Chloroplast?

  • Dietz, Karl-Josef
    • Molecules and Cells
    • /
    • v.39 no.1
    • /
    • pp.20-25
    • /
    • 2016
  • Photosynthesis is a highly robust process allowing for rapid adjustment to changing environmental conditions. The efficient acclimation depends on balanced redox metabolism and control of reactive oxygen species release which triggers signaling cascades and potentially detrimental oxidation reactions. Thiol peroxidases of the peroxiredoxin and glutathione peroxidase type, and ascorbate peroxidases are the main peroxide detoxifying enzymes of the chloroplast. They use different electron donors and are linked to distinct redox networks. In addition, the peroxiredoxins serve functions in redox regulation and retrograde signaling. The complexity of plastid peroxidases is discussed in context of suborganellar localization, substrate preference, metabolic coupling, protein abundance, activity regulation, interactions, signaling functions, and the conditional requirement for high antioxidant capacity. Thus the review provides an opinion on the advantage of linking detoxification of peroxides to different enzymatic systems and implementing mechanisms for their inactivation to enforce signal propagation within and from the chloroplast.

Relationship of the Redox State of Pyridine Nucleotides and Quinone Pool with Spectral Complex Formation in Rhodobacter sphaeroides 2.4.1 (Rhodobacter sphaeroides 2.4.1 내의 pyridine nucleotide와 quinone pool의 redox 상태와 광합성기구의 합성과의 상관관계)

  • Ko, In-Jeong;Oh, Jeong-Il
    • Journal of Life Science
    • /
    • v.19 no.7
    • /
    • pp.852-858
    • /
    • 2009
  • The homeostasis of the pyridine nucleotide pool [NAD(P)H and NAD(P)$^+$] is maintained in Rhodobacter sphaeroides mutant strains defective in the cytochrome bci complex or the cytochrome c oxidases in terms of its concentration and redox state. Aerobic derepression of the puf operon, which is under the control of the PrrBA two-component system, in the CBB3 mutant strain of R. sphaeroides was shown to be not the result of changes in the redox state of the pyridine nucleotides and the ubiquinone/ubiquinol pool. Using the bc$_1$ complex knock-out mutant strain of R. sphaeroides, we clearly demonstrated that the inhibitory effect of cbb$_3$, oxidase on spectral complex formation is not caused indirectly by the redox change of the ubiquinone/ubiquinol pool.

Enhancement of Electrocatalytic Activity upon the Addition of Single Wall Carbon Nanotube to the Redox-hydrogel-based Glucose Sensor

  • Kim, Suk-Joon;Quan, Yuzhong;Ha, Eunhyeon;Shin, Woonsup
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.33-37
    • /
    • 2021
  • In electrochemical glucose sensing, the enhancement of the sensitivity and the response time is essential in developing stable and reliable sensors, especially for continuous glucose monitoring. We developed a method to increase the sensitivity and to shorten the response time for the sensing upon the appropriate addition of single wall carbon nanotube onto the osmium polymer-based hydrogel electrode. Also, the background stabilization is dramatically enhanced.

Electrochemical Immunosensing of GOx-labeled CRP Antigen on Capture Antibody Monolayer Immobilized on Calixcrown-5 SAMs

  • Jung, Hye-Sook;Song, Kum-Soo;Kim, Tai-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.10
    • /
    • pp.1792-1796
    • /
    • 2007
  • Insulating effects on Au electrode according to the thickness and density of coated materials are well-known. To do electrochemical immunoassay reproducibly the glod electrode would be coated with self-assembled monolayers and antobodies. To get reproducibility, the antobody monolayer should be packed at highest density so that the amount of immobilized antibody at defined area should be the same. The calix[4]crown-5 SAMs could provide the basis for the antibodies to be immobilized reproducibly and at highest density. But the insulating effect would be highest too. We proved that the compactly packed protein monolayers on SAMs inhibited the electron transfer by block the free shuttling of redox molecules. The inhibition was minimized by inserting redox molecules in between the proteins during immobilization process. In this paper, we demonstrated that the calix[4]crown-5 SAMs would provide the protein monolayers with highest density and new method to minimize the insulating effect by inserted redox molecules in between the compactly packed protein monolayers.

An Amperometric Proton Selective Sensor with an Elliptic Microhole Liquid/Gel Interface for Vitamin-C Quantification

  • Faisal, Shaikh Nayeem;Hossain, Md. Mokarrom;Lee, Hye-Jin
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.121-126
    • /
    • 2010
  • An amperometric ascorbic acid selective sensor utilizing the transfer reaction of proton liberated from the dissociation of ascorbic acid in aqueous solution across an elliptic micro-hole water/organic gel interface is demonstrated. This redox inactive sensing platform offers an alternative way for the detection of ascorbic acid to avoid a fouling effect which is one of the major concerns in redox based sensing systems. The detection principle is simply measuring the current change with respect to the assisted transfer of protons by a proton selective ionophore (e.g., ETH 1778) across the micro-hole interface between the water and the polyvinylchloride-2-nitrophenyloctylether gel phase. The assisted transfer reaction of protons generated from ascorbic acid across the polarized micro-hole interface was first characterized using cyclic voltammetry. An improved sensitivity for the quantitative analysis of ascorbic acid was achieved using differential pulse stripping voltammetry with a linear response ranging from 1 to $100\;{\mu}M$ concentrations of ascorbic acid. As a demonstration, the developed sensor was applied for analyzing the content of vitamin-C in different types of commercial pharmaceutical tablets and syrups, and a satisfactory recovery from these samples were also obtained.

Utilizing Natural and Engineered Peroxiredoxins As Intracellular Peroxide Reporters

  • Laer, Koen Van;Dick, Tobias P.
    • Molecules and Cells
    • /
    • v.39 no.1
    • /
    • pp.46-52
    • /
    • 2016
  • It is increasingly apparent that nature evolved peroxiredoxins not only as $H_2O_2$ scavengers but also as highly sensitive $H_2O_2$ sensors and signal transducers. Here we ask whether the $H_2O_2$ sensing role of Prx can be exploited to develop probes that allow to monitor intracellular $H_2O_2$ levels with unprecedented sensitivity. Indeed, simple gel shift assays visualizing the oxidation of endogenous 2-Cys peroxiredoxins have already been used to detect subtle changes in intracellular $H_2O_2$ concentration. The challenge however is to create a genetically encoded probe that offers real-time measurements of $H_2O_2$ levels in intact cells via the Prx oxidation state. We discuss potential design strategies for Prx-based probes based on either the redoxsensitive fluorophore roGFP or the conformation-sensitive fluorophore cpYFP. Furthermore, we outline the structural and chemical complexities which need to be addressed when using Prx as a sensing moiety for $H_2O_2$ probes. We suggest experimental strategies to investigate the influence of these complexities on probe behavior. In doing so, we hope to stimulate the development of Prx-based probes which may spearhead the further study of cellular $H_2O_2$ homeostasis and Prx signaling.

Identification of Amino Acids Involved in the Sensory Function of the PrrB Histidine Kinase by Site-directed Mutagenesis (Site-directed mutagenesis에 의한 PrrB histidine kinase의 신호인지 기능에 관련된 아미노산의 발굴)

  • Kim Yong-Jin;Ko In-Jeong;Oh Jeong-Il
    • Journal of Life Science
    • /
    • v.16 no.3 s.76
    • /
    • pp.485-492
    • /
    • 2006
  • The PrrBA two-component system is one of the major regulatory systems that control expression of photosynthesis genes in response to changes in oxygen tension in the anoxygenic photosynthetic bacterium, Rhodobacter sphaeroides. The system consists of the PrrB histidine kinase and the PrrA response regulator. The N-terminal transmembrane domain of PrrB serves as a signal-sensing domain and comprises six transmembrane helices forming three periplasmic loops and two cytoplasmic loops. The $3^{rd}$ and $4^{th}$ transmembrane helices and the $2^{nd}$ periplasmic loop were suggested to play a crucial role in redox-sensory function. In this study we demonstrated that mutations of Asp-90, Gln-93, Leu-94, Leu-98, and Asn-106 in the $2^{nd}$ periplasmic loop and its neighboring region led to severe defects in PrrB sensory function, indicating that these amino acids might be related to the redox-sensing function of PrrB. The mutant forms (D90E, D90N, and D90A) of PrrB were heterologously overexpressed in Escherichia coli, purified by means of affinity chromatography and their autokinase activities were comparatively assessed. The D90N form of PrrB was shown to possess higher autokinase activity than the wild-type form of PrrB, whereas the D90E form of PrrB displayed lower autokinase activity than the wild-type form of PrrB. The D90A mutation led to the loss of PrrB autokinase activity.

Longevity Genes: Insights from Calorie Restriction and Genetic Longevity Models

  • Shimokawa, Isao;Chiba, Takuya;Yamaza, Haruyoshi;Komatsu, Toshimitsu
    • Molecules and Cells
    • /
    • v.26 no.5
    • /
    • pp.427-435
    • /
    • 2008
  • In this review, we discuss the genes and the related signal pathways that regulate aging and longevity by reviewing recent findings of genetic longevity models in rodents in reference to findings with lower organisms. We also paid special attention to the genes and signals mediating the effects of calorie restriction (CR), a powerful intervention that slows the aging process and extends the lifespan in a range of organisms. An evolutionary view emphasizes the roles of nutrient-sensing and neuroendocrine adaptation to food shortage as the mechanisms underlying the effects of CR. Genetic and non-genetic interventions without CR suggest a role for single or combined hormonal signals that partly mediate the effect of CR. Longevity genes fall into two categories, genes relevant to nutrient-sensing systems and those associated with mitochondrial function or redox regulation. In mammals, disrupted or reduced growth hormone (GH)-insulin-like growth factor (IGF)-1 signaling robustly favors longevity. CR also suppresses the GH-IGF-1 axis, indicating the importance of this signal pathway. Surprisingly, there are very few longevity models to evaluate the enhanced anti-oxidative mechanism, while there is substantial evidence supporting the oxidative stress and damage theory of aging. Either increased or reduced mitochondrial function may extend the lifespan. The role of redox regulation and mitochondrial function in CR remains to be elucidated.

A Study on Glucose Sensing Measured by Catalyst Containing Multiple Layers of Glucose Oxidase and Gold Nano Rod (글루코스산화효소와 금나노로드 입자의 다층막으로 구성된 촉매를 이용하여 측정한 글루코스 센싱에 대한 연구)

  • Chung, Yong-Jin;Hyun, Kyuhwan;Han, Sang Won;Min, Ji Hong;Chun, Seung-Kyu;Koh, Won-Gun;Kwon, Yongchai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.2
    • /
    • pp.179-183
    • /
    • 2015
  • In this study, we propose a catalyst structure including enzyme and metal nano rod for glucose sensing. In the catalyst structure, glucose oxidase (GOx) and gold nano rod (GNR) are alternatingly immobilized on the surface of carbon nanotube (CNT), while poly(ethyleneimine) (PEI) is inserted in between the GOx and GNR to fortify their bonding and give them opposite polarization ($[GOx/GNR]_nPEI/CNT$). To investigate the impact of $[GOx/GNR]_nPEI/CNT$ on glucose sensing, some electrochemical measurements are carried out. Initially, their optimal layer is determined by using cyclic voltammogram and as a result of that, it is proved that $[GOx/GNR/PEI]_2/CNT$ is the best layer. Its glucose sensitivity is $13.315{\mu}AmM^{-1}cm^{-2}$. When it comes to the redox reaction mechanism of flavin adenine dinucleotide (FAD) within $[GOx/GNR/PEI]_2/CNT$, (i) oxygen plays a mediator role in moving electrons and protons generated by glucose oxidation reaction to those for the reduction reaction of FAD and (ii) glucose does not affect the redox reaction of FAD. It is also recognized that the $[GOx/GNR/PEI]_3/CNT$ is limited to the surface reaction and the reaction is quasi-reversible.