• Title/Summary/Keyword: redistribution layer

Search Result 56, Processing Time 0.027 seconds

Prediction of Dimensional Instability Resulting from Layer Removal of an Internally Stressed Orthotropic Composite Cylinder

  • Shin, Shang-Hyon
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.757-761
    • /
    • 2002
  • When a layer of cylindrical composite component containing an axisymmetric residual stress state is removed from the inner or outer surface, the dimension of the remaining material changes to balance internal forces. Therefore, in order to machine cylindrical composite components within tolerances, it is important to know dimensional changes caused by residual stress redistribution in the body. In this study, analytical solutions for dimensional changes and the redistribution of residual stresses due to the layer removal from a residually stressed cylindrically orthotropic cylinder were developed. The cylinder was assumed to have axisymmetric radial, tangential and axial residual stresses. The result of this study is useful in cases where the initial residual stress distribution in the component has been measured by a non-destructive technique such as neutron diffraction with no information on the effect of layer removal operation on the dimensional changes.

Modeling Infiltration and Redistribution for Multistorm Runoff Events

  • 유동렬;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.74-77
    • /
    • 2000
  • Infiltration and water flow in the upper soil layer of a deep water table aquifer are modeled for multistorm runoff events. The infiltration process is developed using the sharp wetting front model of Green and Ampt, and the following redistribution process is modeled using the gravity drained rectangular approximation. The Brooks-Corey model [Brooks and Corey, 1966] is adopted to relate the effective soil saturation, the tension head, and the unsaturated hydraulic conductivity Firstly, the infiltration and redistribution model is developed for a single stom runoff event. Then a couple of events combined for multistorm runoff events. In the later case, infiltration rate of the second rainfall is strongly influenced by the length of the rainfall hiatus and soil moisture profile.

  • PDF

DIMENSIONAL CHANGES AND REDISTRIBUTION OF RESID¬UAL STRESSES DUE TO INNER LAYER REMOVAL OF RESID¬UALLY STRESSED CYLINDRICAL COMPONENTS (잔류응력이 내재하는 원통형 부품의 내면 가공에 따른 치수 변화와 잔류 응력의 재분포)

  • S.H.Shin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.522-526
    • /
    • 1997
  • 잔류 응력이 존재하는 부품의 가공 시에는 잔류 응력 상태가 새로운 평형 상태를 이루기 위해 재 분포되며 이는 가공 자체에 따른 변형 이와의 부가적 변형을 초래한다. 고도의 정밀도를 요하는 가공에는 이러한 잔류 응력에 의한 부가적 변형을 고려하여야 하며, 가공 후의 잔류 응력의 재 분포 상태는 가공 후 부품의 물질적 성능을 결정하는데 중요한 요소이므로 이를 예측할 수 있어야 한다. 본 연구에서는 잔류 응력에 의한 부가적 치수 변화를 고려한 가공 후의 부품의 내경 및 두께와 잔류 응력의 재 분포를 예측할 수 있는 이론적 수식을 제시하고 유한요소법에 의한 시뮬레이션의 결과와 비교하였다. 초기 잔류 응력의 분포는 autofrettage process에 의해 유도되었다.

  • PDF

Effect of Ge Redistribution and Interdiffusion during Si1-xGex Layer Dry Oxidation (Si1-xGex 층의 건식산화 동안 Ge 재 분포와 상호 확산의 영향)

  • Shin, Chang-Ho;Lee, Young-Hun;Song, Sung-Hae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.12
    • /
    • pp.1080-1086
    • /
    • 2005
  • We have studied the Ge redistribution after dry oxidation and the oxide growth rate of $Si_{1-x}Ge_x$ epitaxial layer. Oxidation were performed at 700, 800, 900, and $1,000\;^{\circ}C$. After the oxidation, the results of RBS (Rutherford Back Scattering) & AES(Auger Electron Spectroscopy) showed that Ge was completely rejected out of the oxide and pile up at $Si_{1-x}Ge_x$ interface. It is shown that the presence of Ge at the $Si_{1-x}Ge_x$ interface changes the dry oxidation rate. The dry oxidation rate was equal to that of pure Si regardless of Ge mole fraction at 700 and 800$^{\circ}C$, while it was decreased at both 900 and $1,000^{\circ}C$ as the Ge mole fraction was increased. The dry of idation rates were reduced for heavy Ge concentration, and large oxiidation time. In the parabolic growth region of $Si_{1-x}Ge_x$ oxidation, the parabolic rate constant are decreased due to the presence of Ge-rich layer. After the longer oxidation at the $1,000^{\circ}C$, AES showed that Ge peak distribution at the $Si_{1-x}Ge_x$ interface reduced by interdiffusion of silicon and germanium.

Effects of Priodic Blowing Through a Spnnwise Slot on a Turbulent Boundary Layer (I) - Comparison with Steady Blowing - (슬릿을 통한 주기적 국소 가진이 난류경계층에 미치는 영향 (I) - 정상 가진과의 비교 -)

  • Kim, Kyoung-Youn;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.31-40
    • /
    • 2004
  • Direct numerical simulations were performed to analyze the effects of time-periodical blowing through a spanwise slot on a turbulent boundary layer. The blowing velocity was varied in a cyclic manner from 0 to 2A$^{+}$(A$^{+}$ =0.25, 0.50 and 1.00) at a fixed blowing frequency of f$^{+}$=0.017. The effect of steady blowing (SB) was also examined, and the SB results were compared with those for periodic blowing (PB). PB reduced the skin friction near the slot, although to a slightly lesser extent than SB. PB was found to generate a spanwise vortical structure in the downstream of the slot. This vortex generates a reverse flow near the wall, thereby reducing the wall shear stress. The wall-normal and spanwise turbulence intensities under PB are increased as compared to those under SB, whereas the streamwise turbulent intensity under PB is weaker than that under SB. PB enhances more energy redistribution than SB. The periodic response of the streamwise turbulence intensity to PB is propagated to a lesser extent than that of the other components of the turbulence intensities and the Reynolds shear stress.

Effects of Periodic Blowing Through a Spanwise Slot on a Turbulent Boundary Layer (II) - Effects of Blowing Frequency - (슬릿을 통한 주기적 국소 가진이 난류경계층에 미치는 영향 (II) - 분사 주파수의 효과 -)

  • Kim, Kyoung-Youn;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.41-51
    • /
    • 2004
  • A direct numerical simulation is performed to analyze the effects of a localized time-periodic blowing on a turbulent boundary layer flow at R $e_{+}$=300. Main emphasis is placed on the blowing frequency effect on near-wall turbulent flow structures at downstream. Wall-normal velocity on a spanwise slot is varied periodically at different frequencies (0.004$\leq$ $f^{+}$$\leq$0.080). The amplitude of periodic blowing is $A^{+}$=0.5 in wall nit, which corresponds to the value of $v_{rms}$ at $y^{+}$=15 without blowing. The frequency responses are scrutinized by examining the phase or time-averaged turbulent statistics. The optimal frequency ( $f^{+}$=0.03) is observed, where maximum increase in Reynolds shear stress, streamwise vorticity fluctuations and energy redistribution occurs. The phase-averaged stretching and tilting term are investigated to analyze the increase of streamwise vorticity fluctuations which are closely related to turbulent coherent structures. It is found that the difference between PB and SB at a high blowing frequencies is negligible.e.e.

On the Thermal Effect of Vegetation Canopy to the Surface Sublayer Environment (Vegetation Canopy의 접지층 환경에 대한 열적 영향 제2부 : 벼 식피층 관측)

  • 진병화;황수진
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.151-154
    • /
    • 1999
  • To verify the accuracy of the numerical experiment of Part I, measurements at the matured rice canopy located around Junam reservoir were performed at August 14, 1995. According to the measured data, the foliage temperature recorded the highest value, and the ground temperature was the lowest around noon, and these results coincided with those of the numerical experiment using the combined model of Part I. From the estimation using measured data, the maximum value of the latent heat flux was 380$Wm^2$, the highest value among energy balance terms, and the energy redistribution ratio of the latent heat flux was averaged as 0.5, the highest values among redistribution ratios. These results are the same as those of the numerical experiment in tendency, but they reveals a little lower in the absolute values than those from the numerical experiment.

  • PDF

Study of Organic-inorganic Hybrid Dielectric for the use of Redistribution Layers in Fan-out Wafer Level Packaging (팬 아웃 웨이퍼 레벨 패키징 재배선 적용을 위한 유무기 하이브리드 유전체 연구)

  • Song, Changmin;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.53-58
    • /
    • 2018
  • Since the scaling-down of IC devices has been reached to their physical limitations, several innovative packaging technologies such as 3D packaging, embedded packaging, and fan-out wafer level packaging (FOWLP) are actively studied. In this study the fabrication of organic-inorganic dielectric material was evaluated for the use of multi-structured redistribution layers (RDL) in FOWLP. Compared to current organic dielectrics such as PI or PBO an organic-inorganic hybrid dielectric called polysilsesquioxane (PSSQ) can improve mechanical, thermal, and electrical stabilities. polysilsesquioxane has also an excellent advantage of simultaneous curing and patterning through UV exposure. The polysilsesquioxane samples were fabricated by spin-coating on 6-inch Si wafer followed by pre-baking and UV exposure. With the 10 minutes of UV exposure polysilsesquioxane was fully cured and showed $2{\mu}m$ line-pattern formation. And the dielectric constant of cured polysilsesquioxane dielectrics was ranged from 2.0 to 2.4. It has been demonstrated that polysilsesquioxane dielectric can be patterned and cured by UV exposure alone without a high temperature curing process.

Infiltration and Water Redistribution in Sandy Soil: Analysis Using Deep Learning-Based Soil Moisture Prediction (딥러닝 기반 함수비 예측을 이용한 사질토 지반 침투 및 수분 재분포 분석)

  • Eun Soo Jeong;Tae Ho Bong;Jung Il Seo
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.4
    • /
    • pp.490-501
    • /
    • 2023
  • Laboratory column tests were conducted to analyze infiltration and water redistribution processes on the basis of rainfall. To efficiently measure moisture content within soil layers, this research developed a predictive model grounded in a convolutional neural network (CNN), a deep learning technique. The digital images obtained during the column tests were incorporated into the established CNN. The moisture content of each soil layer over time was effectively measured. The measured values were also in relatively good agreement with the moisture content determined using the moisture sensors installed for each soil layer. The use of CNN enabled a comprehensive understanding of continuous moisture distribution within the soil layers, as well as the infiltration process according to soil texture and initial moisture content conditions.

On the Thermal Effect of Vegetation Canopy to the Surface Sublayer Environment Part 1 : Numerical Experiment (Vegetation Canopy의 접지층 환경에 대한 열적 영향 제1부 : 수치실험)

  • 진병화;황수진
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.145-150
    • /
    • 1999
  • To estimate the thermal effect of the vegetation canopy on the surface sublayer environment numerically, we used the combined model of Pielke's1) single layer model for vegetation and Deardorff's2) Force restore method(FRM) for soil layer. Application of present combined model to three surface conditions, ie., unsaturated bare soil, saturated bare soil and saturated vegetation canopy, showed followings; The diurnal temperature range of saturated vegetation canopy is only 20K, while saturated bare soil and unsaturated bare soil surface are 30K, 35K, respectively. The maximum temperature of vegetation canopy occurs at noon, about 2 hours earlier than that of the non-vegetation cases. The peak latent heat fluxes of vegetation canopy is simulated as a 600Wm-2 at 1300 LST. They have higher values during afternoon than beforenoon. Furthermore, the energy redistribution ratios to latent heat fluxes also increased in the late afternoon. Therefore, oasis effect driving from the vegetation canopy is reinforced during late afternoon compared with the non-vegetated conditions.

  • PDF