• Title/Summary/Keyword: red-dopant

Search Result 68, Processing Time 0.029 seconds

Low voltage driving red phosphorescent organic light-emitting devices

  • Kim, Tae-Yong;Suh, Won-Gyu;Moon, Dae-Gyu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.461-464
    • /
    • 2008
  • We have developed low voltage driving red phosphorescent organic light-emitting devices using a new electron transport layer. $Ir(piq)_3$ and CBP were used as a phosphorescent dopant and an emission host, respectively. The device exhibits a luminance of $1000\;cd/m^2$ at a voltage of 2.8 V. This high luminance at low voltage results from a high electron conduction behavior of the new electron transport layer.

  • PDF

Magnetic and Photo-catalytic Properties of Nanocrystalline Fe Doped $TiO_2$ Powder Synthesized by Mechanical Alloying

  • Uhm, Y.R.;Woo, S.H.;Lee, M.K.;Rhee, C.K.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.955-956
    • /
    • 2006
  • Fe-doped $TiO_2$ nanopowders were prepared by mechanical alloying (MA) varying Fe contents up to 8.0 wt.%. The UV-vis absorption showed that the UV absorption for the Fe-doped powder shifted to a longer wavelength (red shift). The absorption threshold depends on the concentration of nano-size Fe dopant. As the Fe concentration increased up to 4 wt.%, the UV-vis absorption and the magnetization were increased. The benefical effect of Fe doping for photocatalysis and ferromagnetism had the critical dopant concentration of 4 wt.%. Based on the UV absorption and magnetization, the dopant level is localized to the valence band of $TiO_2$.

  • PDF

Investigation of the Green Emission Profile in PHOLED by Gasket Doping

  • Park, Won-Hyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.226-226
    • /
    • 2016
  • PHOLED devices which have the structure of ITO/HAT-CN(5nm)/NPB(50nm)/EML(30nm)/TPBi(10nm)/Alq3(20nm)/LiF(0.8nm)/Al(100nm) are fabricated to investigate the green emission profile in EML by using a gasket doping method. CBP and Ir(ppy)3 (2% wt) are co-deposited homogeneously as a background material of EML for green PHOLED, then a 5nm thickness of additionally doped layer by Ir(btp)2 (8% wt) is formed as a profiler of the green emission. The total thickness of the EML is maintained at 30nm while the distance of the profiler from the HTL/EML interface side (x) is changed in 5nm steps from 0nm to 25nm. As shown in Fig. 1, the green (513nm) peak from Ir(ppy)3 is not observed when Ir(btp)2 is also doped homogeneously because Ir(ppy)3 works as an gasket dopant of the Ir(btp)2 :CBP system. Therefore, in this experment, Ir(btp)2 can be used as a profiler of the green emission in CBP:Ir(ppy)3 system. The emission spectra from the PHOLED devices with different x are shown in Fig. 2. In this gasket doping system, stronger red peak means more energy transfer from green to red dopant or higher exciton density by green dopant. To find the green emission profile, the external quantum efficiency (EQE) at 3mA/cm2 for red peaks are calculated. More green light emission at near EML/HBL interface than that of HTL/EML is observed (insert of Fig. 2). This means that the higher exciton density at near EML/HBL interface in homogeneously doped CBP with Ir(ppy)3. As shown in Fig. 3, excitons can be quenched easily to HTL(NPB) because the T1 level of HTL(2.5eV) is relatively lower than that of EML(2.6eV). On the other hand, the T1 level of HBL(2.7eV) is higher than that of EML.

  • PDF

Highly Efficient Red Phosphorescent OLEDs Based on Ir(III) Complexes with Fluorine-substituted Benzoylphenylpyridine Ligand

  • Kang, Hyun-Ju;Lee, Kum-Hee;Lee, Suk-Jae;Seo, Ji-Hyun;Kim, Young-Kwan;Yoon, Seung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3711-3717
    • /
    • 2010
  • Four orange-red phosphorescent Ir(III) complexes were designed and synthesized based on the benzoylphenylpyridine ligand with a fluorine substituent. Multilayered OLEDs with the device structure, ITO/2-TNATA/NPB/CBP : 8% Ir(III) complexes/BCP/Liq/Al, were fabricated using these complexes as dopant materials. All the devices exhibited orange-red electroluminescence and their electroluminescent properties were quite sensitive to the structural features of the dopants in the emitting layers. Among these, the maximum luminance ($14700\;cd/m^2$ at 14.0 V) was observed in the device containing Ir(III) complex 1 as the dopant. In addition, its luminous, power and quantum efficiency were 11.7 cd/A, 3.88 lm/W and 9.58% at $20\;mA/cm^2$, respectively. The peak wavelength of electroluminescence was 606 nm with CIE coordinates of (0.61, 0.38) at 12.0 V. The device also showed stable color chromaticity with various voltages.

Dopant에 따른 amorphous carbon layer의 etch rate 변화 분석연구

  • Jeong, Won-Jun;Kim, Dong-Bin;Park, Sang-Hyeon;Im, Seong-Gyu;Kim, Yong-Seong;Lee, Chang-Hui;Yun, Ju-Yeong;Kim, Tae-Seong;Sin, Jae-Su;Gang, Sang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.92.2-92.2
    • /
    • 2015
  • Negative-AND (NAND) flash의 대용량 및 소형화로 인해 10 nm급 공정을 도입한 128 Gb NAND flash가 개발된 이래, 공정이 미세화되면서 셀이 작이지고 간격이 좁아지게 되었다. 이로 인해 전자가 누설되는 간섭현상이 심화되게 된다. 이러한 문제를 해결하기 위해 기존 NAND의 평면 구조를 수직으로 적층하는 3D NAND 기술이 개발되었으며 차세대 소자를 위한 필수 기술로 각광받고 있다. 3D NAND에서 channel hole etching시 고 선택 비의 중요도가 증가하여 증착막 보호 역할을 하는 hardmask의 두께가 증가하게 되었으며 기존 하드마스크 대비 내식각성이 2배 이상 향상된 hard material 개발이 필요한 실정이다. 본 연구에서는 dopant에 따른 amorphous carbon layer (ACL)의 etch rate의 변화량을 Raman spectroscopy등의 측정장비를 이용하여 비교분석 하였다. dopant의 각각 유량별에 대한 etch rate 변화의 영향성을 비교하였다. dopant의 유량에 따라 etch rate이 변화하는 것을 관찰할 수 있었으며, 2000 sccm 이후에는 etch rate이 급격히 감소하는 경향을 보였다. Raman 측정결과, etch rate의 감소에 따라 G-peak의 red shift가 발생하였으며 두 peak 간의 차이 값이 etch rate의 변화율과 유사한 경향을 보이는 것을 확인하였다.

  • PDF

Highly efficient, long living white PIN-OLEDs for AM displays

  • Murano, Sven;Vehse, Martin;He, Gufeng;Birnstock, Jan;Hofmann, Michael
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.239-244
    • /
    • 2007
  • Highly efficient and stable white PIN OLED structures have been developed with a focus on possible AM display applications. Due to the use of the novel air-stable Novaled n-dopant material NDN26, the mass production compatibility of the PIN approach is improved. With both a conventional n-dopant, NDN1, and a novel air-stable n-dopant, NDN26, similar performance in efficiency and lifetime are reached. Based on highly a stable red fluorescent emitter system, the Novaled PIN approach allows for reaching ultra-long lifetimes of 1,000,000 hours at a brightness of $1,000\;cd/m^2$, both for top and for bottom emission layouts. Furthermore, inverted PIN structures for a possible use in a-Si backplane applications for AM displays are shown. With a phosphorescent green emitter system it could be demonstrated that for bottom and inverted as well as non-inverted top emission, a brightness of $1,000\;cd/m^2$ can be reached at below 3 V. In addition to low operating voltages and long lifetimes, PIN OLEDs also enable for device structures with extremely low operating voltage drifts, a feature of increasing importance for future AM display developments.

  • PDF

Full color reflective cholesteric liquid cystal using photosensitive chiral dopant (감광성 도판트를 이용한 풀컬러 구현 가능 반사형 콜레스테릭 액정)

  • Park, Seo-Kyu;Cho, Hee-Seok;Kwon, Soon-Bum;Kim, Jeong-Soo;Reznikov, Yu.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.394-395
    • /
    • 2007
  • In order to make full color cholesteric displays, color filter-less R, G, B sub-pixel structured cholesteric LC cells have been studied. To make R, G, B colors, UV induced pitch variant chiral dopant was added to cholesteric LC mixtures. The concentration of the photo-sensitive chiral dopant was adjusted so that the initial state showed blue color and the color was changed from blue to green and red with increase of UV irradiation to the cholesteric cells. To prevent the mixing of R, G, B reflective sub-pixel liquid crystals, separation walls were formed using negative photo resister in boundary area between sub-pixels. Through the optimization of the material concentrations and UV irradiation condition, vivid R, G, B colors were achieved.

  • PDF

Red Fluorescent Organic Light-Emitting Diodes Using Modified Pyran-containing DCJTB Derivatives

  • Lee, Kum-Hee;Kim, Sung-Min;Kim, Jeong-Yeon;Kim, Young-Kwan;Yoon, Seung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2884-2888
    • /
    • 2010
  • Two red fluorescent DCJTB derivatives (Red 1 and 2) based on modified pyrans were synthesized and their electroluminescent properties were investigated. Multilayered OLEDs were fabricated with the device structure of ITO/NPB (40 nm)/Red 1, 2 or DCJTB (0.5 or 1%): $Alq_3$ (20 nm)/$Alq_3$ (40 nm)/Liq (2 nm)/Al. All devices exhibited efficient red emissions. In particular, a device containing emitter Red 2 as a dopant in the emitting layer, the maximum luminance was $8737\;cd/m^2$ at 12.0 V, the luminous and power efficiencies were 2.31 cd/A and 1.25 lm/W at $20\;mA/cm^2$, respectively. The peak wavelength of the electroluminescence was 638 nm with the CIE (x,y) coordinates of (0.63, 0.36) at 7.0 V.

Emission Characteristics of White Organic Light-Emitting Diodes Using Ultra Wide Band-gap Phosphorescent Material (Ultra Wide Band-gap 인광체를 이용한 백색 OLED의 발광 특성)

  • Chun, Hyun-Dong;Na, Hyunseok;Choo, Dong Chul;Kang, Eu-Seok;Yang, Jae-Woong;Ju, Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.11
    • /
    • pp.910-915
    • /
    • 2012
  • We studied the emission characteristics of white phosphorescent organic light-emitting diodes (PHOLEDs), which were fabricated using a two-wavelength method. The best blue emitting OLED and red emitting OLED characteristics were obtained at a concentration of 12 vol.% FIrpic and 1 vol.% $Bt_2Ir$(acac) in UGH3, respectively. And the optimum thickness of the total emitting layer was 25 nm. To optimize emission characteristics of white PHOLEDs, white PHOLEDs with red/blue/red, blue/red, red/blue and co-doping emitting layer structures were fabricated using a host-dopant system. In case of white PHOLEDs with co-doping structure, the best efficiency was obtained at a structure UGH3: 12 vol. % FIrpic: 1 vol.% $Bt_2Ir$(acac) (25 nm). The maximum brightness, current efficiency, power efficiency, external quantum efficiency, and CIE (x, y) coordinate were 13,430 $cd/m^2$, 40.5 cd/A, 25.3 lm/W, 17 % and (0.49, 0.47) at 1,000 $cd/m^2$, respectively.

Transient characteristics of top emission organic light emitting diodes with red phosphorescent (적색 인광 도판트를 이용한 Top emission OLED의 Transient 특성)

  • Lee, Chan-Jae;Moon, Dae-Gyu;Han, Jeong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.153-156
    • /
    • 2005
  • In this study, we have investigated transient properties of top emission organic light emitting diode (OLED) with a red electrophosphorescent dopant. The emission spectrum shows a strong peak at 620 nm accompanied with a small peak at 675 nm in the red region. Time evolution of electrophosphorescence reveals a decay time of 703 ms at a voltage pulse of 5 V in a device with an emitting area of 20 $mm^2$. Rise and delay times vary from 450 to 14 ms and 73 to 3 ms, respectively, as the voltage amplitude increases from 4.5 to 10 V. These results are compared with the red emitting device without an electron injection layer.

  • PDF