• Title/Summary/Keyword: red shift

Search Result 294, Processing Time 0.024 seconds

Precipitation, Resolubilization and Luminescent Properties of Tris (2,2$^\prime$-diimine)Ruthenium(II) Complexes in Premicellar Anionic Surfactant Solutions

  • Park, Joon-Woo;Kim, Sung-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.5
    • /
    • pp.317-322
    • /
    • 1988
  • Premicellar precipitation, resolubilization and luminescing behaviors of $RuL_3^{2+}$ (L = bpy, phen, $Me_2bpy$) in aqueous alkylsulfate and sulfonate solutions were studied. Addition of the anionic surfactants to $RuL_3\;^{2+}$ solutions caused initial precipitation which was redissolved by further addition of the surfactants. The apparent solubility products $K_{sp}$'s of the precipitates were evaluated assuming 1:2 salt formation. The values were smaller as the ligand is more hydrophobic and the length of hydrocarbon chain of the surfactant is longer. The $K_{sp}$ values for L = bpy were constant over wide surfactant concentration range. However, those for L = $Me_2bpy$ and also for phen, but to less extent, increased with the surfactant concentration. The resolubilization of 1:2 salts was followed by red-shift of emission band and extensive emission quenching above critical concentration of the surfactants. The critical concentration was lower for more hydrophobic surfactant. For L = $Me_2bpy$, the blue-shifted emission band with enhanced emission intensity was observed in intermediate surfactant concentration region. The high ionic strength of media prevented the precipitate formation, but facilitated the red-shift of the emission bands. The results support that the precipitate is dissolved by accretion of surfactant anions to the salts to form water-soluble surfactant-rich $RuL_3$-surfactant anionic species. These species appeared to aggregate cooperatively to produce large clusters which exhibited the red-shifted emission.

Estimation of Ground and Excited State Dipole Moments of Coumarin 450 by Solvatochromic Shift Method

  • Naik, L.R.;Math, N.N.
    • Journal of Photoscience
    • /
    • v.12 no.2
    • /
    • pp.57-61
    • /
    • 2005
  • The ground and excited state dipole moments of Coumarin 450 (C 450) laser dye were measured at room temperature in several solvents of varying dipole moments. The ground state dipole moment (${\mu}_g$) is estimated by using the modified Onsagar model and the excited state dipole moments (${\mu}_e$) were estimated by the method of solvatochromism as well as by utilizing the microscopic solvent polarity parameter ($E^N_T$). Further, the deviation of some of the points from the linearity of the $E^N_T$ versus Stokes shift indicates the existence of specific type of solute-solvent interaction. The excited state dipole moment of C 450 were found to be higher than those of the ground state and is interpreted in terms of the resonance structure of the molecule. A reasonable agreement has been observed between the values obtained by the method of solvatochromism and modified Onsagar model. It is observed that, corresponding to cyclohexane solution, the fluorescence maxima shift towards the red region with increasing the polarity of the solvents, hence the transition involved are of ${\pi}-{\pi}^*$ type.

  • PDF

Optical Characterization of Azo-dye Attached on Photonic Crystal: The Cause of Large Absorption Band Shift

  • Kim, Byoung-Ju;Kwon, Ki-Chul;Yu, A-Reum;Kang, Kwang-Sun
    • Current Photovoltaic Research
    • /
    • v.5 no.2
    • /
    • pp.43-46
    • /
    • 2017
  • Large absorption band shift has been observed for the azo-dye (disperse red-13, DR-13) attached on the surface of silica spheres. Urethane linkage has been utilized to form covalent bond between azo-dye (-OH) and 3-isocyanatopropyltriethoxysilane (ICPTES, -N=C=O). The synthesized ICPTES-DR-13 (ICPDR) molecules were attached to the silica spheres by the hydrolysis and condensation reaction. Although the absorption peak of DR-13 in methanol is at 510 nm, the absorption peak of the ICPDR-silica spheres shifts to 788 nm. The large absorption peak shift is due to the formation of intramolecular charge-transfer band with large aggregated ICPDR.

Characteristics of a 6-Step Inverter red Brushless DC Motor by Inverter Input Voltage and Phase Shift Control (6스텝 전압형 인버어터의 입력 전압의 크기과 위상 제어에 따른 브러시리스 직류 전동기의 특성 해석)

  • Kim, Kyu-Chan;Woo, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.49-52
    • /
    • 1987
  • In this work, the characteristics of a six step inverter fed brushless DC motor are analyzed and the control of amplitude of inverter input voltage and phase shift of a six step inverter is discussed. The effects of the motor performance, efficiency and power factor, are studied.

  • PDF

Study on Sonochemical Synthesis and Characterization of CdTe Quatum Dot (초음파 방법을 이용한 CdTe 양자점의 합성 및 특성에 관한 연구)

  • Yoo, Jeong-yeol;Kim, Woo-seok;Park, Seon-A;Kim, Jong-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.571-575
    • /
    • 2017
  • In this study, cadmium telluride (CdTe) quantum dots were synthesized by using ultrasonic irradiation method. Optical properties and structural characteristics of the CdTe quantum dots were analyzed by two main variables; the ratio of the precursor and the synthesis time. As the synthesis time increased, the band gap reduction was observed with the growth of CdTe quantum dots. As for the luminescence properties, the red shift appeared at 510~610 nm wavelength range. Also, it was confirmed that the red shift occurs rapidly as the ratio of Te increases. According to PL peak intensity, the highest intensity was shown at 180 to 240 min. Structural characteristics of CdTe quantum dots were investigated through XRD and TEM, and the cubic zinc blend structure was observed. The size of quantum dots was about 2.5 nm and uniformly dispersed when the synthesis time took 210 min. In addition, the apparent crystallinity was discovered in FFT image.

Preparation and Physicochemical Properties of Chitosan from Red Crab Waste-Shell (붉은대게 폐각으로부터 키토산의 제조 및 물리화학적 특성)

  • 김봉섭;박광식;주옥수;서명교;허종화
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.1
    • /
    • pp.36-43
    • /
    • 2001
  • Chitosans were prepared from red crab chitin under various alkali treatment conditions(different alkali concentrations, reaction times and temperatures) and theirphysicochemical properties were investigated. The nitrogen content and deacetylation degree of red crab chitin were 6.15% and 22.17A%, respectively. By the IR spectra, red crab and reference chitin showed the sharp bands at 1650 $cm^{-1}$ / and 1550 $cm^{-1}$ /, which are characteristic of chitin. The nitrogen contents of prepared chitosans ranged from 6.19~7.48%. Thedeacetylation degree was increased from 63~76% and 48~78% with increasing reaction time and temperature, whereas viscosity was decreased. The nitrogen content and yield of red crab chitosan perpared from chitin with 50% NaOH, 1:25(w/v) for 3.0 hr at 120$cm^{-1}$ / were 7.26% and 85.0%, respectively. and viscosity, deacetylation degree and molecular weight, 67.0 mPa.s, 75.0% and 6.5$\times$10$^{5}$ Dalton, respectively. From the IR spectra, the amide absorption bands of red crab and reference chitosan became very weak, similarly. And at solid state $^{13}$ C-NMR spectra, C=O(carbonyl carbon) signals absent, whereas $CH_3$(methyl carbon) was residues. Chemical shift of $^{13}$ C-NMR spectra of red crab and reference chitosans were in good agreement with slight experimental deviation.

  • PDF

Thermodynamics of the Formation of Polymethylbenzene-Halogens Charge Transfer Complexes (IV) (폴리메틸벤젠과 할로겐 사이의 전하이동 착물생성에 관한 열역학적 연구 (제4보))

  • Oh Chun Kwun;Jeong Rim Kim;Je Ha Yang
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.5
    • /
    • pp.274-281
    • /
    • 1982
  • Ultraviolet spectrophotometric investigation have been carried out on the systems of pentamethylbenzene and hexamethylbenzene with iodine and iodine monochloride in carbon tetrachloride. The results reveal the formation of the one to one molecular complexes. The equilibrium constants were obtained in consideration of that absorption maxima due to the formation of the charge transfer complexes shift to blue with the increasing temperature. Thermodynamic parameters for the formation of the charge transfer complexes were calculated from these values. These results indicate that the complex formed between polymethylbenzene and iodine monochloride is more stable than that in the case of iodine. This may be a measure of their relative acidities toward polymethylbenzene, which is explained in terms of the relative electronegativities of halogen atoms. These results combined with previous studies of this series indicated that ${\lambda}_{max}$ shift to red with the increasing number of methyl groups on benezene ring and that the relative stabilities of these complexes increase in the order, Benzene < Toluene < Xylene < Durene < Mesitylene < Pentamethylbenzene < Hexamethylbenzene. The reason for the order found is thus additionally discussed.

  • PDF

Twisted Intramoecular Charge-Transfer Behavior of a Pre-Twisted Molecule, 4-Biphenylcarboxylate Bonded to Poly(Methyl Methacrylate)

  • 강성관;안교덕;조대원;윤민중
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.10
    • /
    • pp.972-976
    • /
    • 1995
  • A trace amount of 4-biphenylcarboxylate having a pre-twisted biphenyl moiety was attached to a poly(methyl methacrylate) side chain and the fluorescence properties of the chromophore were investigated in various solvents such as ethyl acetate and butyl chloride. At room temperature, the polymer exhibited a distinct red shift of the short wavelength emission (325 nm) and an enhanced emission intensity around 430 nm upon excitation at the absorption red edge. The temperature dependence of the intensity ratio (R) of the 325 nm emission to the 430 nm emission was observed when exciting at the red edge over the temperature range between -20 and 60 ℃. However, the temperature dependence was not observed when exciting at the shorter wavelength. The Arrhenius plot of the R value shows the activation energy of 6.0 kJ/mol which is in good agreement with the energy required for the twist of the biphenyl moiety. Together with the results of red edge excitation effects it was concluded that the pre-twisted geometry of the biphenyl moiety is preserved by the restriction of the polymer chain to facilitate the formation of the twisted intramolecular charge transfer (TICT) state upon excitation.

Optical and Electrical Properties of Two-Wavelength White Tandem Organic Light-Emitting Diodes Using Red and Blue Materials (적색과 청색 물질을 사용한 2파장 방식 백색 적층 OLED의 광학 및 전기적 특성)

  • Park, Chan-Suk;Jua, Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.9
    • /
    • pp.581-586
    • /
    • 2015
  • We studied optical and electrical properties of two-wavelength white tandem organic light-emitting diodes using red and blue materials. White fluorescent OLEDs were fabricated using Alq3 : Rubrene (3 vol.% 5 nm) / SH-1 : BD-2 (3 vol.% 25 nm) as emitting layer (EML). White single fluorescent OLED showed maximum current efficiency of 9.7 cd/A, and tandem fluorescent OLED showed 18.2 cd/A. Commission Internationale de l'Eclairage (CIE) coordinates of single and tandem fluorescent OLEDs was (0.385, 0.435), (0.442, 0.473) at $1,000cd/m^2$, respectively. White hybrid OLEDs were fabricated using SH-1 : BD-2 (3 vol.% 10 nm) / CBP : $Ir(mphmq)_2(acac)$ (2 vol.% 20 nm) as EML. White single hybrid OLED showed maximum current efficiency of 7.8 cd/A, and tandem hybrid OLED showed 26.4 cd/A. Maximum current efficiency of tandem hybrid OLED was more twice as high as single OLED. CIE coordinates of single hybrid OLED was (0.315, 0.333), and tandem hybrid OLED was (0.448, 0.363) at $1,000cd/m^2$. CIE coordinates in white tandem OLEDs compared to those for single OLEDs observed red shift. This work reveals that stacked white OLED showed current efficiency improvement and red shifted emission than single OLED.

Cage Link and the Effect of Cross-Link Breakdown (Cross-Link Breakdown 효과와 Cage Link)

  • Oh, Teresa;Kim, Kyung-Sik
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.517-520
    • /
    • 2004
  • Organosilicate films are promising porous low-dielectric materials, which can replace the silicon dioxide films. It was researched that organosilicate films have two different chemical shifts according to the increase of the flow rate ratio. There are the red shift due to the electron deficient substitution group, and the blue shift of the electron rich substitution group. Among these chemical shifts, the blue shift from $1000 cm^{-1}$ to $1250 cm^{-1}$ was related with the formation of pores. The methyl radicals of the electron-rich substitution group terminate easily the Si-O-Si cross-link, and the Si-O-C cage-link near $1057 cm^{-1}$ is originated from the cross-link breakdown due to much methyl radicals.

  • PDF