Browse > Article
http://dx.doi.org/10.21218/CPR.2017.5.2.043

Optical Characterization of Azo-dye Attached on Photonic Crystal: The Cause of Large Absorption Band Shift  

Kim, Byoung-Ju (Department of New & Renewable Energy, Kyungil University)
Kwon, Ki-Chul (Department of New & Renewable Energy, Kyungil University)
Yu, A-Reum (Department of New & Renewable Energy, Kyungil University)
Kang, Kwang-Sun (Department of New & Renewable Energy, Kyungil University)
Publication Information
Current Photovoltaic Research / v.5, no.2, 2017 , pp. 43-46 More about this Journal
Abstract
Large absorption band shift has been observed for the azo-dye (disperse red-13, DR-13) attached on the surface of silica spheres. Urethane linkage has been utilized to form covalent bond between azo-dye (-OH) and 3-isocyanatopropyltriethoxysilane (ICPTES, -N=C=O). The synthesized ICPTES-DR-13 (ICPDR) molecules were attached to the silica spheres by the hydrolysis and condensation reaction. Although the absorption peak of DR-13 in methanol is at 510 nm, the absorption peak of the ICPDR-silica spheres shifts to 788 nm. The large absorption peak shift is due to the formation of intramolecular charge-transfer band with large aggregated ICPDR.
Keywords
Azo-dye; Photonic crystal; Absorption band shift; Intramolecular charge transfer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Murai, S. Yao, T. Nakamura, T. Kawamoto, K. Fujita, K. Yano, and K. Tanaka, Appl. Phys. Lett. 101, 151121, 2012.   DOI
2 R. C. Schroden, C. F. Blanford, B. J. S. Melde, and A. Stein, Chem. Mater. 13, 1074, 2001.   DOI
3 Q. Zhang, and L. A. Archer, Macromolecules 37, 1928, 2004.   DOI
4 Y. Li, Y. Deng, Y. He, X. Tong, and X. Wang, Langmuir 21, 6567, 2005.   DOI
5 S. Choi, S. Stassi, A. P. Pisano, and T. I. Zohdi, Langmuir 26, 11690, 2010.   DOI
6 S. H. Ko, I. Park, H. Pan, C. P. Grigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. J. Frechet, Nano Lett. 7, 1869, 2007.   DOI
7 Y. Chen, Y. Zhang, L. Shi, J. Li, Y. Xin, T. Yang, and Z. Guo, Appl. Phys. Lett. 101, 033701, 2012.   DOI
8 C. J. Barrelet, J. Bao, M. Loncar, H. G. Park, F. Capasso, and C. M. Lieber, Nano Lett. 6, 11, 2006.   DOI
9 L. M. Goldenberg, O. V. Sakhno, T. V. Smirnova, P. Helliwell, V. Chechik, and J. Stumpe, Chem. Mater. 20, 4619, 2008.   DOI
10 H. Yusuf, W. G. Kim, D. H. Lee, M. Aloshyna, A. G. Brolo, and M. G. Moffitt, Langmuir 23, 5251, 2007.   DOI
11 Y. Sivan, Appl. Phys. Lett. 101, 021111, 2012.   DOI
12 H. Shpaisman, B. J. Krishnatreya, and D. G. Grier, Appl. Phys. Lett. 101, 091102, 2012.   DOI
13 Z. Cai, J. Teng, D. Xia, and X. S. Zhao, J. Phys. Chem. C 115, 9970, 2011.   DOI
14 H. Duan, and K. K. Berggren, Nano Lett. 10, 3710 (2010).   DOI
15 H. Niu, Q. Chen, M. Ning, Y. Jia, and X. Wang, J. Phys. Chem. B 108, 3996, 2004.   DOI
16 C. Paquet, and E.Kumacheva, Materialstoday 11, 48 (2008).
17 H. H. Pham, I. Gourevich, E. N. Jonkman, and E. Kumacheva, J. Mater. Chem. 17, 523, 2007.   DOI
18 J. Yu, J. Qiu, Y. Cui, J. Yu, L. Liu, L. Xu, and G. Qian, Mater Lett. 63, 2594, 2009.   DOI
19 Y. Cui, M. Wang, L. Chen, and G. Qian, Dyes and Pigments 62, 43, 2004.   DOI
20 C. Pavier, and A. Candini, Eur. Polym. J. 36, 1653, 2000.   DOI
21 A. Facchetti, A. Abbotto, L. Beverina, M. E. Boom, P. Dutta, G. Evmenenko, T. J. Marks, G. A. Pagani, Chem. Mater. 14, 4996, 2002.   DOI
22 D. H. Choi, J. H. Park, J. H. Lee, and S. D. Lee, Thin Solid Films 360, 213, 2000.   DOI