• Title/Summary/Keyword: red seaweed

Search Result 157, Processing Time 0.019 seconds

Macroalgal Community Structure on the Subtidal of Southern Six Islands, Korea (남해안 6개 도서의 조하대 해조류 군집구조)

  • Heo, Jin suk;Yoo, Hyun Il;Park, Eun jung;Ha, Dong Soo
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.4
    • /
    • pp.595-603
    • /
    • 2017
  • The macroalgal community structure was examined at the subtidal zones of six study sites, on the Southern coast of Korea from between May and August 2015. A total of 132 seaweeds, comprising 10 green, 28 brown and 94 red Seaweed, were identified. The seaweed biomass was $80.32g\;dry\;wt.\;m^{-2}$ in average, and it was maximal at Geomundo ($166.94g\;dry\;wt.\;m^{-2}$) and minimal at Byeongpungdo ($14.52g\;dry\;wt.\;m^{-2}$). On the basis of the biomass, the Ecklonia cava was a representative species, distributed widely in the subtidal zone of the three islands (Yeoseodo, Geomundo, Baekdo). Also, the Sargassum sp. was dominant at Sejondo and Hongdo. The turbidity and light transmittance was divided into two groups. The seaweed community structure of group A (Byeongpungdo, Sejondo, Geomundo) was characterized by high turbidity, low light transmittance and a lower habitat depth than were observed in group B (Hongdo, Baekdo, Yeoseodo). As the water depth increased, the biomass decreased due to the lowered light transmittance. In Byeongpungdo and Sejondo, which showed high turbidity and low light transmittance, the degree of seaweed coverage was decreased with the depth of water. The ESGII ratio of the Ecological Status Group was higher than fourty percentage in Byeongpungdo and Baekdo. Community indices were as follows: dominance index (DI) 0.35-0.90, richness index (R) 7.03-17.93, evenness index (J′) 0.22-0.60, and diversity index (H′) 0.79-2.18. The Macroalgal zonation of the subtidal zone was calculated by the Ecklonia cava and Brown algal population on five islands(Byeongpungdo, Yeoseodo, Geomundo, Beakdo, Hongdo). On the other hand, Undaria pinnatifida and Sargassum sp. dominated at Sejondo. Additionally, the biomass ratio and the species richness of green algae was lower in group A. These differences in the seaweed community structure may have resulted from the effects of turbidity and light transmittance.

Comparative study on antioxidant activity of Gold 1, a new strain of Pyropia yezoensis

  • Jimin Hyun;Sang-Woon Lee;Hyeon Hak Jeong;Jae-Il Kim
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.2
    • /
    • pp.158-168
    • /
    • 2023
  • The global output of Pyropia yezoensis (dried seaweed or laver, also called 'Gim' in Korea) has been reduced over the half-decade due to the wide spread of red rot disease, a serious algal disease affecting P. yezoensis. Recently, Gold 1 (G1), which is a resistant strain of P. yezoensis to red rot disease, was developed and commercialized in South Korea, yet its physiological activity has not been investigated. In this study, a comparative study was performed on G1 and commercially available strain of P. yezoensis (CP) for their antioxidative activities. Aqueous extract of G1 showed more marked 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activity compared to that of CP. In 293T cells, antioxidant activity against H2O2-induced reactive oxygen species (ROS) formation was only observed in G1 extract. In addition, G1 extract showed more potent inhibitory effect on H2O2-induced apoptotic cell death than CP extract, as examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and fluorescence microscopy. Expression levels of various apoptosis-related genes, including B-cell lymphoma 2-associated X protein, p53, capase-3, and inflammatory cytokines, in H2O2-treated cells were significantly decreased by the treatment of G1. Taken together, the present study suggests that a new strain of red seaweed G1 can recover oxidative stress effectively by improving the imbalance of ROS generation and has a potential to be used a functional ingredient as an antioxidant source.

A Study on Long-term Monitoring of Seaweed Flora and Community Structure at Hakampo, Western Coast of Korea (한국 서해안 학암포 해조상 및 군집구조의 장기모니터링 연구)

  • Heo, Jin Suk;Han, Su Jin;Choi, Han Gil;Nam, Ki Wan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.6
    • /
    • pp.969-976
    • /
    • 2015
  • Macroalgal community structure was seasonally examined at Hakampo (Taean) in western coast of Korea from February 2007 to October 2010. Also, the effects of "Hebei Spirit" oil spill on the seaweed community structure were evaluated. A total of 101 macroalgal species were identified, comprising 12 green, 18 brown and 71 red algae. Species richness ranged 58-65 species with maximal in 2008 and minimal in 2009. Seaweed biomass ranged $75.81-102.06g\;dry\;wt./m^2$ (mean, $88.78g/m^2$) with maximal in 2008 and minimal in 2010. Vertical distribution from the high to low intertidal zone was Neorhodomela aculeata and Polyopes affinis; Corallina pilulifera and Chondrus ocellatus; Sargassum thunbergii and Ulva australis. Coarsely-branched seaweeds comprised the highest proportion of biomass ($37.17g/m^2$, or 41.86% of the total biomass) and ecological state group I (ESG I) seaweed biomass was between 81.67-85.44%. Also, ephemeral macroalgae including Ulva species sharply increased in species number and biomass within 1-2 year from the "Hebei Sprit" oil spill in the mid and low intertidal zone. Hakampo rocky shore is still good condition as evaluated based on macroalgal species number, biomass, and composition in functional form and ESG I seaweeds.

Seasonal Variability of Marine Algal Flora and Community Structure at Jungjado, on the South Coast of Korea (한국 남해안 정자도의 해조상 및 군집구조 변화)

  • Yoo, Hyun Il;Jeong, Bo Kyung;Park, Jeong Kwang;Heo, Jin Suk;Park, Mi-Seon;Choi, Han Gil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.6
    • /
    • pp.927-934
    • /
    • 2014
  • Marine algal flora and community structure were seasonally examined at Jungjado, on the southern coast of Korea, from July 2007 to May 2008. A total of 112 seaweeds, including 15 green, 24 brown, and 73 red algae, were identified and 33 species were found throughout the year. The average seaweed biomass was 145.78 g dry weight $m^{-2}$, and the biomass was maximal in winter (184.74 g) and minimal in autumn (106.17 g). The dominant and subdominant species in terms of biomass were Sargassum thunbergii and Grateloupia elliptica in summer, S. thunbergii and Corallina pilulifera in autumn, S. thunbergii and Chondracanthus intermedius in winter, and Sargassum fusiforme and G. elliptica in spring. The vertical distribution patterns of seaweeds from the upper to lower intertidal zones at Jungjado were S. thunbergii - Ulva conglobata - Gelidium elegans in summer; Caulacantus ustulatus - Chondria crassicaulis - C. pilulifera in autumn; Ulva australis - S. thunbergii - G. elliptica in winter; and Gloiopeltis tenax - S. fusiforme - G. elliptica in spring. Seasonally the evenness, richness, and diversity indices tended to have their highest values during the winter and their lowest values in the summer. However, the dominant index was recorded as lowest in winter and highest in the summer. The C/P, R/P, and (R+C)/P values reflecting the flora characteristics were 0.58, 3.04, and 3.62, respectively.

Ethanol Production From Seaweeds by Acid-Hydolysis and Fermentation (산 가수분해와 발효에 의한 해조류로부터 에탄올 생산)

  • Na, Choon-Ki;Song, Myoung-Ki;Son, Chang-In
    • New & Renewable Energy
    • /
    • v.7 no.3
    • /
    • pp.6-16
    • /
    • 2011
  • In order to study the utilization of seaweeds as an alternative renewable feedstock for bioethanol production, their properties of hydrolysis and fermentation were investigated. The seaweeds were well hydrolyzed with diluted sulfuric acid. The weight loss of seaweeds reached 75-90%, but only 12-51% of them was converted into reducing sugars after the acid-hydrolysis at $130^{\circ}C$ for 4-6h. The yield of reducing sugars increased with increasing the hydrolysis time up to 4h and then decreased thereafter. In contrast, the ethanol yield from the hydrolysates increased with hydrolysis time except for green seaweeds maximizing at 4h. Optimal fermentation time by Saccharomyces cerevisiae (ATCC 24858) varied with seaweeds; 48h for green seaweeds, 96h for brown and red seaweeds. The ethanol yield from the hydrolysate reached 138${\pm}$37mg/g-dry for green seaweeds, 258${\pm}$29mg/g-dry for brown seaweeds, and 343${\pm}$53mg/g-dry for red seaweeds, which correspond to approximately 1.5-4.0 times more than the theoretical yield from total reducing sugars in the hydrolysates. The results obtained indicate clearly that the non-reducing sugars or oligosaccharides dissolved in the hydrolysate played an important role in producing bioethanol. Considering the productivity and production cost of each seaweed, brown seaweeds such as Laminaria japonica and Undaria pinnatifida seem to be a promissing feedstock for bioethanol production.

The gene repertoire of Pythium porphyrae (Oomycota) suggests an adapted plant pathogen tackling red algae

  • Badis, Yacine;Han, Jong Won;Klochkova, Tatyana A.;Gachon, Claire M.M.;Kim, Gwang Hoon
    • ALGAE
    • /
    • v.35 no.2
    • /
    • pp.133-144
    • /
    • 2020
  • Pythium porphyrae is responsible for devastating outbreaks in seaweed farms of Pyropia, the most valuable cultivated seaweed worldwide. While the genus Pythium contains many well studied pathogens, the genome of P. porphyrae has yet to be sequenced. Here we report the first available gene repertoire of P. porphyrae and a preliminary analysis of pathogenicity-related genes. Using ab initio detection strategies, similarity based and manual annotation, we found that the P. porphyrae gene repertoire is similar to classical phytopathogenic Pythium species. This includes the absence of expanded RxLR effector family and the detection of classical pathogenicity-related genes like crinklers, glycoside hydrolases, cellulose-binding elicitor lectin-like proteins and elicitins. We additionally compared this dataset to the proteomes of 8 selected Pythium species. While 34% of the predicted proteome appeared specific to P. porphyrae, we could not attribute specific enzymes to the degradation of red algal biomass. Conversely, we detected several cellulases and a cutinase conserved with plant-pathogenic Pythium species. Together with the recent report of P. porphyrae triggering disease symptoms on several plant species in lab-controlled conditions, our findings add weight to the hypothesis that P. porphyrae is a reformed plant pathogen.

Glioblastoma-Specific Anticancer Activity of Pheophorbide a from the Edible Red Seaweed Grateloupia elliptica

  • Cho, MyoungLae;Park, Gab-Man;Kim, Su-Nam;Amna, Touseef;Lee, Seokjoon;Shin, Woon-Seob
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.3
    • /
    • pp.346-353
    • /
    • 2014
  • The chlorophyll-related compound pheophorbide a (Pa) was successively purified from an edible red seaweed, Grateloupia elliptica, using silica, octadecyl silica column chromatography and reversed phase-high-performance liquid chromatography, as well as the cell cycle inhibitory and apoptotic effects of Pa being investigated in U87MG glioblastoma cells. The Pa exhibited strong anticancer effects in the absence of direct photo-irradiation against various cancer cell lines, including U87MG, SK-OV-3, and HeLa cells. Among the cancer cells, the strongest anticancer activity of Pa exhibited on U87MG cells with $IC_{50}$ values of 2.8 ${\mu}g/ml$. In addition, Pa specifically had cytostatic activity on glioblastoma cells rather than human umbilical vein endothelial cells. Analysis of the cell cycle distribution showed that Pa induced G0/G1 arrest of U87 MG cells. In addition, arrested cells induced late apoptosis and DNA degradation under dark condition. These results suggest that Pa isolated from G. elliptica is a potential glioblastoma-specific anticancer agent without side effects on normal cells.

Screening for DPPH Free Radical Scavenging Activities of Autogenous Seaweeds in Jeju Island Using a Electron Spin Resonance (ESR) Spectroscopy (Electron Spin Resonance을 이용한 제주 자생 해조류의 DPPH Free Radical 소거활성 검색)

  • Cha, Seon-Heui;Heo, Soo-Jin;Jeon, You-Jin
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.4
    • /
    • pp.252-259
    • /
    • 2006
  • Extracts which were prepared by four different extractions - 80% methanol extracts (ME) at high ($70^{\circ}C$) and a room temperature ($20^{\circ}C$), respectively and aqueous extracts (AE) at both temperatures with the residue after the methanol extracts - of 10 green, 19 brown and 25 red seaweeds collected in Jeju Island coast were examined for their DPPH free radical scavenging activity using a ESR (electron spin resonance) spectroscopy. A variety of the extracts showed positive scavenging effect against DPPH free radical (except the green seaweeds). Among the extracts, the brown seaweed extracts exhibited the highest scavenging activity. Especially, Sargassum spp. of the brown seaweeds have remarkable scavenging activities - both methanolic and aqueous at the both temperatures ($20^{\circ}C$ and $70^{\circ}C$). On the other hand, ME showed better scavenging activity than AE in the red seaweed extracts. These results indicate that autogenous seaweeds in Jeju will be potential natural antioxidants for functional food compounds.

  • PDF

Nitrogen Conversion Factors and in vitro Protein Digestibility of some Seaweeds (수종해조의 단백계수와 in vitro Digestibility)

  • Ryu Hong-Soo;SATTERLEE Lowell D.;LEE Kang-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.15 no.4
    • /
    • pp.263-270
    • /
    • 1982
  • In an attempt to evaluate the nutritional quality of seaweed protein, the effects of heat treatment on the in vitro digestibility and trypsin inhibitor content in seaweed were determined. In this study, the nitrogen-to-protein conversion factors were also calculated on the basis of quantitative amino acid data. The results are as follows : 1. The in vitro protein digestbilty of red seaweeds (P. teoera anc P. suborbiculata) were ranged from 78.5 to 82.2, and green seawerd (E. linza) and brown seaweeds showed value under 80 in vitro digestibility. In general, trypsin inhibitor contents in brown seaweed were higher (0.33-0.54 mg/g) than those of red seaweeds (0.26-0.39 mg/g). And it is noted that the lowest trypsin inhibitor content was shown in green seaweed (E. linza) in spite of lowest in spite digestibility (78.5). 2. The in vitro protein digestibility of sun dried laver (P. tenera) was increased with cooling time (microwave heating), but it was not significant. Hot plate cooking raised the in vitro digestibility from 81. 1 to 84.5. The influence pot cooking time on trypsin inhibitor content was inversely proportional to in vitro digestibility. 3. Computed nitrogen factor, based on amino acid content (Factor method) and Kjeldahl nitrogen content (Kjeldahl mettled), were 5.83 (H. fusiforme)- 6.52 (P. tencra) as Factor method and 5.40 (U. pinnatifida)-6.29 (P. tenera) as Kjeldahl method. Individual value for each nitrogen conversion factor differed by species, especially in brown seaweeds. The best estimate of the protein content of seaweed can be calculated, from multiplying the summed amino acid content by conversion factor (Factor method).

  • PDF

Trace Components and Functional Saccharides in Seaweed-1 -Changes in Proximate Composition and Trace Elements According to the Harvest Season and Places- (식용해조류중의 미량요소와 특수기능성 당질-1 -산지와 채취시기별 일반성분의 조성과 무기원소의 분포-)

  • CHO Deuk-Moon;KIM Doo-Sang;LEE Dong-Soo;KIM Hyeung-Rak;PYEUN Jae-Hyeung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.1
    • /
    • pp.49-59
    • /
    • 1995
  • Nine species of edible seaweed [green laver (Monostroma nitidium) and sea staghorn ( Codium fragile) of green algae; sea mustard (Undaria pinnatifida), seaweed fusiforme(Hizikia fusiforme), gulf weed (Sargassum fulvellium), and sea tangle (Laminaria japonica) of brown algae; seaweed dilatata (Halimeniopsis dilatata), seaweed furcata (Gloiopeltis furcata), and laver (Porphyra tenera) of red algae] collected from Kijang, Chungmu, and Yosu in Korea, were examined and compared on their chemical and mineral composition depending on their harvesting season. Crude protein $(N\pm6.25)$ showed about $45\%$ on moisture free basis (the contents of every components described below are shown as moisture free basis) for laver and $30\%$ for green laver collected from ever seasons and sites. Sea tangle showed the highest content in crude lipid $(10\%)$ among brown seaweeds and green laver had $6\%$ of crude lipid regardless their habitats. Ash and carbohydrate in sea staghorn hold about $90\%$ of total solids but those levels were only $50\%$ in laver. The relationship between ash and carbohydrate content showed a tendency with reverse correlation. Mineral compositions were examined on green laver, sea mustard, and seaweed furcata collected from Kijang. Sodium was eminent element (1,798-7,334mg/l00g) followed by potassium. Magnesium and calcium content were low level compared with sodium and potassium. As a micro-element iron was appraised the highest status (165-330mg/100g) in green laver, however, iron in sea mustard and seaweed furcata was comparatively low amount (2.7-47.4mg/100g). The level of zinc was also comparatively high and that was varied on habitats. In conclusion, chemical compositions of these algae were distinctively varied on species and habitats, and mineral compositions were notably changed by the harvesting season.

  • PDF