• 제목/요약/키워드: red phosphors

검색결과 187건 처리시간 0.024초

적색 형광체 Gd1-xAl3(BO3)4:Eux3+의 합성과 발광 특성 (Synthesis and Photoluminescence Properties of Red Phosphors Gd1-xAl3(BO3)4:Eux3+)

  • 조신호;조선욱
    • 한국재료학회지
    • /
    • 제22권3호
    • /
    • pp.145-149
    • /
    • 2012
  • Red phosphors of $Gd_{1-x}Al_3(BO_3)_4:{Eu_x}^{3+}$ were synthesized by using the solid-state reaction method. The phase structure and morphology of the phosphors were measured using X-ray diffraction (XRD) and field emission-scanning electron microscopy (FE-SEM), respectively. The optical properties of $GdAl_3(BO_3)_4:Eu^{3+}$ phosphors with concentrations of $Eu^{3+}$ ions of 0, 0.05, 0.10, 0.15, and 0.20 mol were investigated at room temperature. The crystals were hexagonal with a rhombohedral lattice. The excitation spectra of all the phosphors, irrespective of the $Eu^{3+}$ concentrations, were composed of a broad band centered at 265 nm and a narrow band having peak at 274 nm. As for the emission spectra, the peak wavelength was 613 nm under a 274 nm ultraviolet excitation. The intensity ratio of the red emission transition ($^5D_0{\rightarrow}^7F_2$) to orange ($^5D_0{\rightarrow}^7F_1$) shows that the $Eu^{3+}$ ions occupy sites of no inversion symmetry in the host. In conclusion, the optimum doping concentration of $Eu^{3+}$ ions for preparing $GdAl_3(BO_3)_4:Eu^{3+}$ phosphors was found to be 0.15 mol.

Eu3+ 농도가 적주황색 형광체 Gd1-xPO4:Eux3+의 발광 특성에 미치는 영향 (Effects of Eu3+ Concentration on the Photoluminescence Properties of Red-orange Phosphor Gd1-xPO4:Eux3+)

  • 조선욱
    • 한국재료학회지
    • /
    • 제21권11호
    • /
    • pp.611-616
    • /
    • 2011
  • Red-orange phosphors $Gd_{1-x}PO_4:{Eu_x}^{3+}$ (x = 0, 0.05, 0.10, 0.15, 0.20) were synthesized with changing the concentration of $Eu^{3+}$ ions using a solid-state reaction method. The crystal structures, surface morphology, and optical properties of the ceramic phosphors were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence (PL) spectrophotometry. The XRD results were in accordance with JCPDS (32-0386), and the crystal structures of all the red-orange phosphors were found to be a monoclinic system. The SEM results showed that the size of grains increases and then decreases as the concentration of $Eu^{3+}$ ionincreases. As for the PL properties, all of the ceramic phosphors, irrespective of $Eu^{3+}$ ion concentration, had orange and red emissions peaks at 594 nm and 613 nm, respectively. The maximum excitation and emission spectra were observed at 0.10 mol of $Eu^{3+}$ ion concentration, just like the grain size. An orange color stronger than the red means that $^5D_0{\rightarrow}^7F_1$ (magnetic dipole transition) is dominant over the $^5D_0{\rightarrow}^7F_2$ (electric dipole transition), and $Eu^{3+}$ is located at the center of the inversion symmetry. These properties contrasted with those of a red phosphor $Y_{1-x}PO_4:{Eu_x}^{3+}$, which has a tetragonal system. Therefore, we confirm that the crystal structure of the host material has a major effect on the resulting color.

Effect of Chip Wavelength and Particle Size on the Performance of Two Phosphor Coated W-LEDs

  • Yadav, Pooja;Joshi, Charusheela;Moharil, S.V.
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권2호
    • /
    • pp.66-68
    • /
    • 2014
  • Most commercial white LED lamps use blue chip coated with yellow emitting phosphor. The use of blue excitable red and green phosphors is expected to improve the CRI. Several phosphors, such as $SrGa_2S_4:Eu^{2+}$ and $(Sr,Ba)SiO_4:Eu^{2+}$, have been suggested in the past as green components. However, there are issues of the sensitivity and stability of such phosphors. Here, we describe gallium substituted $YAG:Ce^{3+}$ phosphor, as a green emitter. YAG structures are already accepted by the industry, for their stability and efficiency. LEDs with improved CRI could be fabricated by choosing $Y_3Al_4GaO_{12}:Ce^{3+}$ (green and yellow), and $SrS:Eu^{2+}$ (red) phosphors, along with blue chip. Also, the effect of a slight change in chip wavelength is studied, for two phosphor-coated w-LEDs. The reduction in particle size of the coated phosphors also gives improved w-LED characteristics.

Preparation, Characterization and Photoluminescence Properties of Ca1-xSrxS:Eu Red-emitting Phosphors for a White LED

  • Sung, Hye-Jin;Cho, Young-Sik;Huh, Young-Duk;Do, Young-Rag
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권8호
    • /
    • pp.1280-1284
    • /
    • 2007
  • A series of Ca1-xSrxS:Eu (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) phosphors were synthesized by solid-state reactions. The Ca1-xSrxS:Eu phosphors have a strong absorption at 455 nm, which corresponds to the emission wavelength of a blue LED. The emission peak of Ca1-xSrxS:Eu is blue shifted from 655 to 618 nm with increasing Sr content. The characteristics of Ca1-xSrxS:Eu phosphors make them suitable for use as wavelengthtunable red-emitting phosphors for three-band white LEDs pumped by a blue LED. In support of this, we fabricated a three-band white LED by coating SrGa2S4:Eu and Ca0.6Sr0.4S:Eu phosphors onto a blue LED chip, and characterized its optical properties.

FED용 Al 및 Pr 첨가 SrTiO3 적색 형광체의 제조와 발광특성 (Preparation and Luminescent Properties of SrTiO3 : Al, Pr Red Phosphors for the FED)

  • 박창섭;이정운;유일
    • 한국전기전자재료학회논문지
    • /
    • 제18권9호
    • /
    • pp.846-850
    • /
    • 2005
  • [ $SrTiO_3$ ]:Al, Pr red phosphors for FED were synthesized by solid state reaction method. The dependence of their luminescent properties on Sr and Al concentration was investigated. The $SrTiO_3$: Al, Pr phosphors showed the characteristic X-ray diffraction patterns of the perovskite structure. Photoluminescence intensity and lattice constant in $SrTiO_3$: Al, Pr phosphors changed in quite a similar manner with Sr concentration. Photoluminescence intensity increased with increasing lattice constant, and the decrease of photoluminescence intensity and lattice constant occurred in the vicinity of 1 mol Sr concentration.

Frit 첨가량에 따른 PDP용 형광체의 특성 연구 (Characteristics of Phosphors for PDP with Frit Contents)

  • 정아름;김형준;최성철
    • 한국세라믹학회지
    • /
    • 제47권2호
    • /
    • pp.146-150
    • /
    • 2010
  • Because the plasma display panel has used red, green and blue(RGB) phosphors, it has suffer from two intrinsic problems; 1) the cell defect due to the lack of binding force between phosphor particles and 2) mis-discharge because of difference of electrical characteristics among RGB phosphors. In order to control the mechanical and electrical properties of RGB phosphors, frit with $ZnOB_2O_3-SiO_2-Al_2O_3$ system was added to RGB phosphor as sintering additive. The mechanical properties were increased by the amount of frit. The amount of frit under 5 wt% rarely affected dielectric constant. However, there was the limit of amount because of decreasing optical properties seriously; over 3 wt% in red, over 10 wt% in green and blue.

Search for new red phosphors under NUV/blue excitation - the stimulating future for solid state lighting

  • Vaidyanathan, Sivakumar;Jeon, Duk-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.1350-1352
    • /
    • 2008
  • Research on down conversion phosphor materials is the key for the development of solid state lighting (SSL). Especially finding alternative red phosphor for white LEDs based on blue or NUV LEDs are important research task. Under this view, we have synthesized a series of $Eu^{3+}$ substituted $La_2W_{2-x}Mo_xO_9$ (x = 0 ~ 2, insteps of 0.1) red phosphor and characterized by X-ray diffraction (XRD) and photoluminescence. XRD results reveal a phase transition from triclinic to cubic structure for $x\;{\geq}\;0$. All the compositions show broad charge transfer band due to charge transfer from oxygen to tungsten/molybdenum and red emission due to $Eu^{3+}$ ions. Select compositions show high red emission intensity compared to the commercial red phosphor under NUV/blue ray excitation. Hence, this candidate can be possible red emitting phosphors for white LEDs.

  • PDF

Search for Phosphors for Use in Displays and Lightings using Heuristics-based Combinatorial Materials Science

  • Sharma, Asish Kumar;Sohn, Kee-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.207-210
    • /
    • 2009
  • According to the recent demand for materials for use in various displays and solid state lightings, new phosphors with improved performance have been pursued consistently. Multi objective genetic algorithm assisted combinatorial material search (MOGACMS) strategies have been applied to various multi-compositional inorganic systems to search for new phosphors and to optimize the properties of phosphors.

  • PDF

CaWO4:Eu3+ 형광체의 합성과 발광 특성 (Synthesis and Photoluminescence Properties of CaWO4:Eu3+ Phosphors)

  • 조신호;조선욱
    • 한국재료학회지
    • /
    • 제22권5호
    • /
    • pp.215-219
    • /
    • 2012
  • Red phosphors $Ca_{1-1.5x}WO_4:{Eu_x}^{3+}$ were synthesized with different concentrations of $Eu^{3+}$ ions by using a solid-state reaction method. The crystal structure of the red phosphors was found to be a tetragonal system. X-ray diffraction (XRD) results showed the (112) main diffraction peak centered at $2{\theta}=28.71^{\circ}$, and the size of crystalline particles exhibited an overall decreasing tendency according to the concentration of $Eu^{3+}$ ions. The excitation spectra of all the phosphors were composed of a broad band centered at 275 nm in the range of 230-310 nm due to $O^{2-}{\rightarrow}W^{6+}$ and a narrow band having a peak at 307 nm caused by $O^{2-}{\rightarrow}Eu^{3+}$. Also, the excitation spectrum presents several strong lines in the range of 305-420 nm, which are assigned to the 4f-4f transitions of the $Eu^{3+}$ ion. In the case of the emission spectrum, all the phosphor powders, irrespective of $Eu^{3+}$ ion concentration, indicated an orange emission peak at 594 nm and a strong red emission spectrum centered at 615 nm, with two weak lines at 648 and 700 nm. The highest red emission intensity occurred at x = 0.10 mol of Eu3+ ion concentration with an asymmetry ratio of 12.5. Especially, the presence of $Eu^{3+}$ in the $Ca_{1-1.5x}WO_4:{Eu_x}^{3+}$ shows very effective use of excitation energy in the range of 305-420 nm, and finally yields a strong emission of red light.

Eu3+ 농도에 따른 적색 형광체 Gd1-xVO4:Eux3+의 형광 특성 (Photoluminescence Properties of Red Phosphors Gd1-xVO4:Eux3+ Subjected to Eu3+ Concentration)

  • 조신호;조선욱
    • 한국전기전자재료학회논문지
    • /
    • 제25권3호
    • /
    • pp.193-197
    • /
    • 2012
  • $Gd_{1-x}VO_4:{Eu_x}^{3+}$ red phosphors were synthesized with changing the concentration of $Eu^{3+}$ ion by using a solid-state reaction method. The crystal structure, surface morphology, and photoluminescence and photoluminescence excitation properties of the red phosphors were measured by using X-ray diffractometer, field emission-scanning electron microscopy, and florescence spectrometer, respectively. The XRD results showed that the main peak of all the phosphor powders occurs at (200) plane. As for the photoluminescence properties, the maximum excitation spectrum occurred at 306 nm due to the charge transfer band from ${VO_4}^{3-}$ to $Eu^{3+}$ ions and the maximum emission spectrum was the red luminescence peaking at 619 nm when the concentration of $Eu^{3+}$ ion was 0.10 mol.