Browse > Article
http://dx.doi.org/10.3740/MRSK.2012.22.3.145

Synthesis and Photoluminescence Properties of Red Phosphors Gd1-xAl3(BO3)4:Eux3+  

Cho, Shin-Ho (Department of Materials Science and Engineering, Silla University)
Cho, Seon-Woog (Department of Materials Science and Engineering, Silla University)
Publication Information
Korean Journal of Materials Research / v.22, no.3, 2012 , pp. 145-149 More about this Journal
Abstract
Red phosphors of $Gd_{1-x}Al_3(BO_3)_4:{Eu_x}^{3+}$ were synthesized by using the solid-state reaction method. The phase structure and morphology of the phosphors were measured using X-ray diffraction (XRD) and field emission-scanning electron microscopy (FE-SEM), respectively. The optical properties of $GdAl_3(BO_3)_4:Eu^{3+}$ phosphors with concentrations of $Eu^{3+}$ ions of 0, 0.05, 0.10, 0.15, and 0.20 mol were investigated at room temperature. The crystals were hexagonal with a rhombohedral lattice. The excitation spectra of all the phosphors, irrespective of the $Eu^{3+}$ concentrations, were composed of a broad band centered at 265 nm and a narrow band having peak at 274 nm. As for the emission spectra, the peak wavelength was 613 nm under a 274 nm ultraviolet excitation. The intensity ratio of the red emission transition ($^5D_0{\rightarrow}^7F_2$) to orange ($^5D_0{\rightarrow}^7F_1$) shows that the $Eu^{3+}$ ions occupy sites of no inversion symmetry in the host. In conclusion, the optimum doping concentration of $Eu^{3+}$ ions for preparing $GdAl_3(BO_3)_4:Eu^{3+}$ phosphors was found to be 0.15 mol.
Keywords
red phosphor; $GdAl_3(BO_3)_4:Eu^{3+}$; solid-state reaction;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 K. G. Lee, B. Y. Yu, C. H. Pyun and S. -I. Mho, Solid State Comm., 122, 485 (2002).   DOI   ScienceOn
2 W. Park, R. Y. Lee, and C. J. Summers, Y. R. Do and H. G. Yang, Mater. Sci. Eng. B, 78, 28 (2002).
3 M. A. Flores-Gonzalez, G. Ledoux, S. Roux, K. Lebbou, P. Perriat and O. Tillement, J. Solid State Chem., 178, 989 (2005).   DOI   ScienceOn
4 H. Liang, Q. Su, Y. Tao, J. Xu and Y. Huang, Mater. Res. Bull., 41, 1468 (2006).   DOI   ScienceOn
5 X. Yang, X. Dong, J. Wang and G. Liu, Mater. Lett., 63, 629 (2009).   DOI   ScienceOn
6 L. S. Wang, X. M. Liu, Z. W. Quan, D. Y. Kong, J. Yang and J. Lin, J. Lumin., 122-123, 36 (2007).   DOI   ScienceOn
7 J. Zhang, Y. Wang, Z. Zhang, Z. Wang and B. Liu, Mater. Lett., 62, 202 (2008).   DOI   ScienceOn
8 J. Huang, R. Gao, Z. Lu, D. Qian, W. Li, B. Huang and X. He, Opt. Mater., 32, 857 (2010).   DOI   ScienceOn
9 Y. Wang, K. Uheda, H. Takizawa, U. Mizumoto and T. Endo, J. Electrochem. Soc., 148, G430 (2001).   DOI   ScienceOn
10 Y. H. Wang and X. X. Li, J. Electrochem. Soc., 153, G238 (2006).   DOI   ScienceOn
11 J. He, H. Liang, D. Hou, S. Sun, Y. Huang, Z. Gao and Y. Tao, Mater. Chem. Phys., 132, 756 (2012).   DOI   ScienceOn
12 C. Gorller-Walrand, E. Huygen, K. Binnemans and L. Fluyt, J. Phys. Condens. Matter, 6, 7797 (1994).   DOI   ScienceOn
13 S. -W. Cho, Kor. J. Mater. Res., 21, 611 (2011) (in Korean).   DOI   ScienceOn
14 S. Lange, I. Sildos, M. Hartmanova, J. Aarik and V. Kiisk, J. Non-Cryst. Solids, 354, 4380 (2008).   DOI   ScienceOn
15 X. Y. Huang, D. C. Yu and Q. Y. Zhang, J. Appl. Phys., 106, 113521 (2009).   DOI   ScienceOn
16 G. Chadeyron, R. Mahiou, M. EL-Ghozzi, A. Arbus, D. Zambon and J. C. Cousseins, J. Lumin., 72-74, 564 (1997).   DOI   ScienceOn
17 G. Li, Q. Cao, Z. Li and Y. Huang, J. Rare Earth, 26, 792 (2008).   DOI   ScienceOn
18 D. S. Jo, Y. Y. Luo, K. Senthil, T. Masaki and D. H. Yoon, Opt. Mater., 33, 1190 (2011).   DOI   ScienceOn