Browse > Article
http://dx.doi.org/10.3740/MRSK.2012.22.5.215

Synthesis and Photoluminescence Properties of CaWO4:Eu3+ Phosphors  

Cho, Shin-Ho (Department of Materials Science and Engineering, Silla University)
Cho, Seon-Woog (Department of Materials Science and Engineering, Silla University)
Publication Information
Korean Journal of Materials Research / v.22, no.5, 2012 , pp. 215-219 More about this Journal
Abstract
Red phosphors $Ca_{1-1.5x}WO_4:{Eu_x}^{3+}$ were synthesized with different concentrations of $Eu^{3+}$ ions by using a solid-state reaction method. The crystal structure of the red phosphors was found to be a tetragonal system. X-ray diffraction (XRD) results showed the (112) main diffraction peak centered at $2{\theta}=28.71^{\circ}$, and the size of crystalline particles exhibited an overall decreasing tendency according to the concentration of $Eu^{3+}$ ions. The excitation spectra of all the phosphors were composed of a broad band centered at 275 nm in the range of 230-310 nm due to $O^{2-}{\rightarrow}W^{6+}$ and a narrow band having a peak at 307 nm caused by $O^{2-}{\rightarrow}Eu^{3+}$. Also, the excitation spectrum presents several strong lines in the range of 305-420 nm, which are assigned to the 4f-4f transitions of the $Eu^{3+}$ ion. In the case of the emission spectrum, all the phosphor powders, irrespective of $Eu^{3+}$ ion concentration, indicated an orange emission peak at 594 nm and a strong red emission spectrum centered at 615 nm, with two weak lines at 648 and 700 nm. The highest red emission intensity occurred at x = 0.10 mol of Eu3+ ion concentration with an asymmetry ratio of 12.5. Especially, the presence of $Eu^{3+}$ in the $Ca_{1-1.5x}WO_4:{Eu_x}^{3+}$ shows very effective use of excitation energy in the range of 305-420 nm, and finally yields a strong emission of red light.
Keywords
$CaWO_4$:Eu; red phosphor; solid-state reaction; $Eu^{3+}$ f-f transition; asymmetry ratio;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Y. Hu, W. Zhuang, H. Ye, D. Wang, S. Zhang and X. Huang, J. Alloy. Comp., 390, 226 (2005).   DOI   ScienceOn
2 Q. Xiao, Q. Zhou and M. Li, J. Lumin., 130, 1092 (2010).   DOI   ScienceOn
3 F. M. Emen, R. Altinkaya, S. Sonmez and N. Kulcu, Acta Phys. Pol., 121, 249 (2012).   DOI
4 M. V. Nazarov, D. Y. Jeon, J. H. Kang, E. -J. Popovici, L. -E. Muresan, M. V. Zamoryanskaya and B. S. Tsukerblat, Solid State Comm., 131, 307 (2004).   DOI   ScienceOn
5 Y. Su, L. Li and G. Li, Chem. Mater., 20, 6060 (2008).   DOI   ScienceOn
6 B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, 3rd ed., p.170, Prentice Hall, New Jersey, U.S.A. (2001).
7 C. A. Kodaira, H. F. Brito, O. L. Malta and O. A. Serra, J. Lumin., 101, 11 (2003).   DOI   ScienceOn
8 S. Cho and S. -W. Cho, Kor. J. Mater. Res., 22, 145 (2012) (in Korean).   DOI   ScienceOn
9 J. Huang, R. Gao, Z. Lu, D. Qian, W. Li, B. Huang and X. He, Opt. Mater., 32, 857 (2010).   DOI   ScienceOn
10 J. Zhang, Y. Wang, Z. Zhang, Z. Wang and B. Liu, Mater. Lett., 62, 202 (2008).   DOI   ScienceOn
11 Y. Tian, B. Chen, H. Yu, R. Hua, X. Li, J. Sun, L. Cheng, H. Zhong, J. Zhang, Y. Zheng, T. Yu and L. Huang, J. Colloid Interface Sci., 360, 586 (2011).   DOI   ScienceOn
12 H. He, J. Huang, L. Cao and X. Ao, Adv. Nat. Appl. Sci., 3, 204 (2009).
13 A. Zalga, R. Sazinas, E. Garskaite, A. Kareiva, T. Bareika, G. Tamulaitis, R. Juskenas and R. Ramanauskas, CHEMIJA, 20, 169 (2009).