• Title/Summary/Keyword: red phosphor

Search Result 234, Processing Time 0.024 seconds

Synthesis and Anaiysis of Photohnninescence Properties of $^5D_1$$^7F_1$ Transition in $LaGaO_3$:$Eu^{3+}$ Red Phosphor ($LaGaO_3$:$Eu^{3+}$형광체의 합성 및 발광 특성)

  • Kim, Kyoung Hwa;Choi, Yoon Young;Sohn, Kee Sun;Kim, Chang Hae;Park, Hee Dong;Choe, Se Young
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.5
    • /
    • pp.453-459
    • /
    • 2000
  • FED has deserved an intensive attentioD as a new flat panel display. The present investigationaims at undemtanding the photoluminescence and cathodoluminescent properties of hGaO$_3$: $Eu^{3+}$ phosphor bytaking into account the possibility that this phosphor could be applied for FED. In onler to investigate on.sucha detailed behavior; 8everM experimental skil18 Je conducted to the LaGaO$_3$:$Eu^{3+}$ phosphoL The excimtion srectrum artd emission spectmn were rnezsured in the UV range and then decay curve of $^5D_0$+$^7F_j$transitions\vas examined. The decay behavior of $^5D_0$ emission was anMyzed by a newly Iuoposed cross-relaxation mech-ani8In in asswiation with inteFwnter di1ffision (or migration). The cross-mlaxation from $^5D_0$ to CTB (Cha'geTransfer Band) wuld be a quite retsonable by considering the excitation spectrum. It could be also found thatthe quenching type was changed from ditfrsion controlled process to the direct quenching process -s inJeasing $Eu^{3+}$ oncntration.

  • PDF

Synthesis and Properties of SrMoO4 Phosphors Doped with Various Rare Earth Ions for Anti-Counterfeiting Applications (위조 방지 분야에 응용 가능한 다양한 희토류 이온이 도핑된 SrMoO4 형광체의 제조 및 특성)

  • Moon, Tae-Ok;Jung, Jae-Yong;Cho, Shinho
    • Korean Journal of Materials Research
    • /
    • v.30 no.8
    • /
    • pp.406-412
    • /
    • 2020
  • SrMoO4:RE3+ (RE=Dy, Sm, Tb, Eu, Dy/Sm) phosphors are prepared by co-precipitation method. The effects of the type and the molar ratio of activator ions on the structural, morphological, and optical properties of the phosphor particles are investigated. X-ray diffraction data reveal that all the phosphors have a tetragonal system with a main (112) diffraction peak. The emission spectra of the SrMoO4 phosphors doped with several activator ions indicate different multicolor emissions: strong yellow-emitting light at 573 nm for Dy3+, red light at 643 nm for Sm3+, green light at 545 nm for Tb3+, and reddish orange light at 614 nm for Eu3+ activator ions. The Dy3+ singly-doped SrMoO4 phosphor shows two dominant emission peaks at 479 and 573 nm corresponding to the 4F9/26H15/2 magnetic dipole transition and 4F9/26H13/2 electric dipole transition, respectively. For Dy3+ and Sm3+ doubly-doped SrMoO4 phosphors, two kinds of emission peaks are observed. The two emission peaks at 479 and 573 nm are attributed to 4F9/26H15/2 and 4F9/26H13/2 transitions of Dy3+ and two emission bands centered at 599 and 643 nm are ascribed to 4G5/26H7/2 and 4G5/26H9/2 transitions of Sm3+. As the concentration of Sm3+ increases from 1 to 5 mol%, the intensities of the emission bands of Dy3+ gradually decrease; those of Sm3+ slowly increase and reach maxima at 5 mol% of Sm3+ ions, and then rapidly decrease with increasing molar ratio of Sm3+ ions due to the concentration quenching effect. Fluorescent security inks based on as-prepared phosphors are synthesized and designed to demonstrate an anti-counterfeiting application.

[ $LaNbO_4$ ] : X (X = Bi, Eu)형광체의 발광 및 저 전압 음극선 발광 특성 (Photoluminescent and low voltage cathodoluminescent properties of $LaNbO_4$ : X (X = Bi, Eu) phosphors)

  • On Ji-Won;Kim Youhyuk
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.1
    • /
    • pp.32-37
    • /
    • 2006
  • Rare-earth niobates, ag (Ln = Y, La, Gd) are well-known self-activated phosphors due to charge transfer in $NbO^{3-}_4$ showing a broad and strong emission band in the spectral region around 410 nm. In order to find new blue and red phosphors for FED, $LaNbO_4$ : X (X = Bi, Eu) phosphors are prepared through solid-state reactions at high temperature. The optimum reaction condition for these phosphors to give maximum emission intensity is obtained when it is first fired at $1250^{\circ}C$ for 2 h followed by second firing at $1400^{\circ}C$ for 1 h. Under irradiation at 254 nm, $1mol\%\;Bi^{3+}$ doped $LaNbO_4$ phosphor shows strong blue emission band with a range of $420\~450nm$. Also $10mol\%\;Eu^{3+}$ doped $LaNbO_4$ phosphor shows the maximum emission intensity at about 610 nm. Emission peaks at $415\~460nm$, $530\~560nm$and $570\~620nm$are observed in phosphors below $10mol\%\;Eu^{3+}$ doped $LaNbO_4$. Similar results are obtained in cathodoluminescent property of these phosphors.

Thermal Deformation Analysis of Shadow Mask in a Flat TV and Prediction of Electron Beam Landing Shift by FEM (유한요소법에 의한 평면 TV 새도우마스크의 열변형해석 및 전자빔 오착 예측)

  • Kim, Jeong;Park, Soo-Kil;Kang, Beom-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2297-2304
    • /
    • 2002
  • Two-dimensional and three-dimensional finite element methods have been used to analyze the deformation behavior of a shadow mask due to thermal and tension load. The shadow mask inside the Braun tube of a TV set has numerous slits through which the electron beams are guided to land on the designed phosphor of red, green or blue. Its thermal deformation therefore causes landing shift of the electron beam and results in decolorization of a screen. For the realistic finite element analysis, the effective thermal conductivity and the effective elastic modulus arc calculated, and then the shadow mask is modeled as shell without slits. Next a transient thermal analysis of the shadow mask is performed, wherein thermal radiation is a major heat transfer mechanism. Analysis of the resulting thermal deformation is followed, from which the landing shift of the electron beam is obtained. The present finite element scheme may be efficiently used to reduce thermal deformation of a shadow mask and in developing prototypes of a large screen flat TV.

A Study on the Control of Luminous Color in Gas Discharge Tubes

  • Lee, Jong-Chan;Her, In-Sung;Park, Yong-Sung;Masaharu Aono;Park, Dae-Hee
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.1
    • /
    • pp.5-9
    • /
    • 2004
  • In this paper, pulsed discharge is used to control the luminous color in gas discharge tubes. The luminous color of the positive column in gas discharge tubes filled with Hg-Ar-Ne (1: 9, 60[Torr]) and having no phosphor material, varies from red to blue emitted by the Ne and Hg from the pulsed discharge. With changing of pulse-width and frequency, the electron temperature in the transient period affects changes to the residual ion and metastable atom densities. The first metastable atoms containing energy levels of about 16.6 [eV]have a very high probability that a collision will result in the ionization potential of Ar being 15.8 [eV]. The change of locus in the CIE chromaticity diagram with increasing pulse-width and frequency approves the variation of luminous color.

Reliability improvement of LED's red phosphor by coating (코팅에 의한 LED 적생 형광체의 신뢰성 개선)

  • Sim, Jae-Min;Kim, Jae-Bum;Kim, Yeong-Woo;Song, Sang-Bin;Yu, Yeoung-Moon;Kim, Jae-Pil
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.209-211
    • /
    • 2008
  • 본 연구에서는 실리케이트 적색 형광체의 신뢰성을 향상시키기 위하여 $SiO_2$ 박막을 졸-겔(sol-gel) 방법으로 코팅하였으며, 봉지재의 종류에 따른 코팅된 형광체의 신뢰성 변화를 조사하였다. 졸-겔 코팅 후 형광체 표면을 관찰한 결과 졸-겔 코팅이 잘 이루어 졌음을 알 수 있었으며, 4회 코팅 후 박막의 두께는 약 150nm였다. 코팅하지 않은 형광체의 경우 봉지재에 따른 차이는 있었지만 500시간 경과 후 효율 감소율은 30% 이상이었으며 코팅 한 형광체의 경우는 에폭시, JCR6175가 10${\sim}$25%, EG6301은 10% 이내의 효율 감소율을 보였다. 한편 색좌표 경우 에폭시 봉지재가 약 0.02의 변화를 EG6301 봉지재의 경우 0.01 이내의 변화를 보였다.

  • PDF

Synthesis and Photoluminescence Properties of ZrO2:Eu3+ Nanoparticles Using Salt-Assisted Ultrasonic Pyrolysis Process (염 보조 초음파 분무 열분해법을 이용한 ZrO2:Eu3+ 나노입자의 합성 및 발광 특성)

  • Hwangbo, Young;Lim, Hyo Ryoung;Lee, Young-In
    • Korean Journal of Materials Research
    • /
    • v.27 no.5
    • /
    • pp.270-275
    • /
    • 2017
  • Inorganic phosphors based on $ZrO_2:Eu^{3+}$ nanoparticles were synthesized by a salt-assisted ultrasonic spray pyrolysis process that is suitable for industrially-scalable production because of its continuous nature and because it does not require expensive precursors, long reaction time, physical templates or surfactant. This facile process results in the formation of tiny, highly crystalline spherical nanoparticles without hard agglomeration. The powder X-ray diffraction patterns of the $ZrO_2:Eu^{3+}$ (1-20 mol%) confirmed the body centered tetragonal phase. The average particle size, estimated from the Scherrer equation and from TEM images, was found to be approximately 11 nm. Photoluminescence (PL) emission was recorded under 266 nm excitation and shows an intense emission peak at 607 nm, along with other emission peaks at 580, 592 and 632 nm which are indicated in red.

InP Quantum Dot - Organosilicon Nanocomposites

  • Dung, Mai Xuan;Mohapatra, Priyaranjan;Choi, Jin-Kyu;Kim, Jin-Hyeok;Jeong, So-Hee;Jeong, Hyun-Dam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.191-191
    • /
    • 2012
  • InP quantum dot (QD) - organosilicon nanocomposites were synthesized and their photoluminescence quenching was mainly investigated because of their applicability to white LEDs (light emitting diodes). The as-synthesized InP QDs which were capped with myristic acid (MA) were incompatible with typical silicone encapsulants. Post ligand exchange the MA with a new ligand, 3-aminopropyldimethylsilane (APDMS), resulted in soluble InP QDs bearing Si-H groups on their surface (InP-APDMS) which allow embedding the QDs into vinyl-functionalized silicones through direct chemical bonding, overcoming the phase separation problem. However, the ligand exchange from MA to APDMS caused a significant decrease in the photoluminescent efficiency which is interpreted by ligand induced surface corrosion relying on theoretical calculations. The InP-APDMS QDs were cross-linked by 1,4-divinyltetramethylsilylethane (DVMSE) molecules via hydrosilylation reaction. As the InP-organosilicon nanocomposite grew, its UV-vis absorbance was increased and at the same time, the PL spectrum was red-shifted and, very interestingly, the PL was quenched gradually. Three PL quenching mechanisms are regarded as strong candidates for the PL quenching of the QD nano-composites, namely the scattering effect, Forster resonance energy transfer (FRET) and cross-linker tension preventing the QD's surface relaxation.

  • PDF

Luminescence Characteristics of ZnGa2O4 Phosphors with the Doped Activator (활성제 첨가에 따른 ZnGa2O4 형광체의 발광특성)

  • Hong Beom-Joo;Choi Hyung-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.5
    • /
    • pp.432-436
    • /
    • 2006
  • The $ZnGa_2O_4$ and Mn, Cr-doped $ZnGa_2O_4$ Phosphors were synthesized through conventional solid state reactions. The XRD patterns show that the $ZnGa_2O_4$ has a (3 1 1) main peak and a spinel phase. The emission wavelength of $ZnGa_2O_4$ showed main peak of 420 nm and maximum intensity at the sintering temperature of $1100^{\circ}C$. In the crystalline $ZnGa_2O_4$, the Mn shows green emission (510 nm, $^4T_1-^6A_1$) with a quenching concentration of 0.6 mol%, and the Cr shows red emission (705 nm, $^4T_2-^4A_2$) with a quenching concentration of 2 mol%. These results indicate that $ZnGa_2O_4$ Phosphors hold promise for potential applications in field emission display devices with high brightness operating in full color regions.

The Optical Property of nano-sized $Gd_2O_3:Eu^{3+}$ Phosphor using solution method (액상반응법으로 합성한 $Gd_2O_3:Eu^{3+}$ 나노형광체의 열처리 온도에 따른 광학적 특성)

  • Park, Chung-Sik;Kwak, Min-Ki;Yoon, Seung-Pil;Hong, Sung-Jei;Han, Jeong-In;Song, Yo-Seung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.157-159
    • /
    • 2005
  • 본 연구에서는 저온 액상반응법을 이용하여 활성제 Eu의 농도를 10wt%로 도핑하고 열처리를 각각 450, 700, $900^{\circ}C$로 1h 유지하여 $Gd_2O_3:Eu^{3+}$ 나노형광체를 합성하였다. 제조된 형광체의 결정화, 입자크기를 XRD, BET로 분석하였고, 이들이 발광 휘도에 미치는 영향을 확인하였다. 또한 합성된 형광체의 PL(photoluminescence) 특성을 알아보기 위해 여기파장 254nm 의한 발광스펙트럼, 611nm에 의한 여기스펙트럼을 조사하였다. 발광 특성은 611nm에서 주 peak을 갖는 $Eu^{3+}$ 이온에 의한 $^5D_0-^7F_{J(J=0,1,2)}$ 전이에 기인된 전형적인 Red 형광체의 특성을 나타냈고, 입자크기는 평균 20-60nm 정도이고, 발광강도는 열처리 온도가 증가함에 따라 향상되었다.

  • PDF