• 제목/요약/키워드: red giant branch stars

검색결과 60건 처리시간 0.027초

DUST PRODUCTION BY EVOLVED STARS IN THE MAGELLANIC CLOUDS

  • KEMPER, F.
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.283-287
    • /
    • 2015
  • Within the context of the hugely successful SAGE-LMC and SAGE-SMC surveys, Spitzer photometry observations of the Large and Small Magellanic Clouds have revealed millions of infrared point sources in each galaxy. The brightest infrared sources are generally dust producing and mass-losing evolved stars, and several tens of thousands of such stars have been classified. After photometrically classifying these objects, the dust production by several kinds of evolved stars - such as Asymptotic Giant Branch stars and Red Supergiants - can be determined. SAGE-Spec is the spectroscopic follow-up to the SAGE-LMC survey, and it has obtained Spitzer-IRS $5-40{\mu}m$ spectroscopy of about 200 sources in the LMC. Combined with archival data from other programs, observations at a total of ~1000 pointings have been obtained in the LMC, while ~250 IRS pointings were observed in the SMC. Of these, a few hundred pointings represent dust producing and mass-losing evolved stars, covering a range in colors, luminosities, and thus mass-loss rates. Red Supergiants and O-rich and C-rich AGB stars - the main dust producers - are well represented in the spectroscopic sample. This paper will summarize what we know about the mineralogy of dust producing evolved stars, and discuss their relative importance in the total dust budget.

구상성단 거성들의 분광 연구 (SPECTROSCOPIC STUDY ON RED GIANTS IN GLOBULAR CLUSTERS)

  • 이상각
    • 천문학논총
    • /
    • 제15권spc1호
    • /
    • pp.15-30
    • /
    • 2000
  • A large scatter of the chemical abundances among globular cluster red giants has been observed. Especially the chemical elements C, N, O, Na, Mg, and Al vary form star to star within globular clusters. Except for $\omega$ Cen and M22, most globular clusters could be considered to be monometallic of their iron peak elements within error ranges. The variations in light elements among globuar cluster giants appear much more pronounced than in field halo giants of comparable Fe-peak metallicity. It has been found that in general the nitrogen abundance is anticorrelated with both carbon and oxygen, while it is correlated with Na and AI. These intracluster abundance inhomogeneities can be interpreted either by mixing of nucleosythesized material from the deep stellar interior during the red giant branch phase of evolution or by inhomogeneities of primordially processed material, from which the stars were formed. The simple way of distingushing between two senarios is to obtain the element abundances of main-sequence stars in globular clusters, which are too faint for high resolution spectroscopic studies until now. Both 'evolutionary' and 'primodial' origins are accepted for explanations of abundance variations among red giants and CN-CH anticorrelations among main-sequence stars in globular clusters. This paper reviews chemical abundances of light elements among globular cluster giants, with brief reviews of cannonical stellar evolution of low mass stars after main-sequence and deep mixing for abundance variations of cluster giants, and a possible connection between deep mixing and second parameter.

  • PDF

THE HELIUM ABUNDANCES OF GLOBULAR CLUSTERS

  • Yun, Hae-Young;Lee, See-Woo
    • 천문학회지
    • /
    • 제12권1호
    • /
    • pp.17-25
    • /
    • 1979
  • The two methods for the derivation of helium abundance are presented. The magnitude of the largest bump along the red giant branch is fainter as helium abundance decreases and metal abundance increases. Using this relation and observed bump magnitude, the He-abundances of globular clusters are estimated. The another method is to use the relation that the ratio of asymptotic giant branch and horizontal branch stars increases with decreasing He-abundance. The comparison of the He-abundances derived from the two methods with those derived from the other two methods shows that they are consistent within the dispersion less than ${\Delta}Y=0.1$.

  • PDF

New insights on the origin of multiple stellar populations in globular clusters

  • 김재연;이영욱
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.46.1-46.1
    • /
    • 2018
  • In order to investigate the origin of multiple stellar populations in the halo and bulge of the Milky Way, we have constructed chemical evolution models for the low-mass proto-Galactic subsystems such as globular clusters. Unlike previous studies, we assume that supernova blast waves undergo blowout without expelling the pre-enriched gas, while relatively slow winds of massive stars, together with the winds and ejecta from low and intermediate mass asymptotic-giant-branch stars, are all locally retained in these less massive systems. We find that the observed Na-O anti-correlations in metal-poor GCs can be reproduced when multiple episodes of starbursts are allowed to continue in these subsystems. A specific form of star formation history with decreasing time intervals between the stellar generations, however, is required to obtain this result, which is in good agreement with the parameters obtained from our stellar evolution models for the horizontal-branch. The "mass budget problem" is also much alleviated by our models without ad-hoc assumptions on star formation efficiency and initial mass function. We also applied these models to investigate the origin of super helium-rich red clump stars in the metal-rich bulge as recently suggested by Lee et al. (2015). We find that chemical enrichments by the winds of massive stars can naturally reproduce the required helium enhancement (dY/dZ = 6) for the second-generation stars. Disruption of proto-globular clusters in a hierarchical merging paradigm would have provided helium enhanced stars to the bulge field.

  • PDF

Narrow-band Ca Photometry for Dwarf Spheroidal Galaxies: Recent Results and Future Work

  • Kim, Hak-Sub;Han, Sang-Il;Yoon, Suk-Jin
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.75.2-75.2
    • /
    • 2019
  • This poster introduces the ongoing "Narrow-band Ca Photometry for Dwarf Spheroidal Galaxies" project and presents the latest results. The project aims to explain the formation and evolution of dwarf spheroidal galaxies by examining the structural properties of stellar populations as a function of metallicity. To overcome the lack of stars with known spectroscopic metallicities for dwarf spheroidal galaxies, we apply the hk index as a photometric metallicity indicator to three galaxies-Draco, Sextans, and Canes Venatici I. For all three galaxies, we found that metal-poor and metal-rich groups of red-giant-branch stars have distinct spatial distributions, in which metal-rich stars are centrally concentrated while metal-poor stars are relatively dispersed. In Sextans, we found an off-centered peak of metal-poor stars which is presumed to be a disrupting star cluster in this galaxy. We will discuss the implications of our results for the dwarf galaxy formation and possible directions on future work of this project.

  • PDF

Variations in the Na-O anticorrelation in globular clusters

  • Lee, Jae-Woo
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2010년도 한국우주과학회보 제19권1호
    • /
    • pp.27.1-27.1
    • /
    • 2010
  • The Na-O anticorrelation seen in almost all globular clusters ever studied using high-resolution spectroscopy is now generally explained by the primordial pollution from the first generation of the intermediate-mass AGB stars to the proto-stellar clouds of the second generation of stars. Using the recent data by Carretta and his collaborators, the different shapes of the Na-O anticorrelations for RGB stars brighter than and fainter than the red giant branch bump can be clearly seen. If the elemental abundance measurements by Carretta and his collaborators are not greatly in error, this variation in the Na-O anticorrelation against luminosity indicates an internal deep mixing episode during the ascent of the low-mass RGB in globular clusters. Our result implies that the multiple stellar population division scheme solely based on [O/Fe] and [Na/Fe] ratios of a globular cluster, which is becoming popular, is not reliable for stars brighter than the RGB bump.

  • PDF

LOW-RESOLUTION SPECTROSCOPIC STUDIES OF GLOBULAR CLUSTERS WITH MULTIPLE POPULATIONS

  • LIM, DONGWOOK;HAN, SANG-IL;ROH, DONG-GOO;LEE, YOUNG-WOOK
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.255-259
    • /
    • 2015
  • Recent narrow-band Ca photometry discovered two distinct red giant branch (RGB) populations in some massive globular clusters (GCs) including M22, NGC 1851, and NGC 288. In order to investigate the differences in light/heavy elements abundances between the two subpopulations, we have performed low-resolution spectroscopy for stars on the two RGBs in these GCs. We find a significant difference (more than $4{\sigma}$) in calcium abundance from the spectroscopic HK' index for both M22 and NGC 1851. We also find a more than $8{\sigma}$ difference in CN band strength between the Ca-strong and Ca-weak subpopulations. For NGC 288, however, we detect the presence of a large difference only in the CN strength. The calcium abundances of the two subpopulations in this GC are identical within errors. We also find interesting differences in CN-CH relations among these GCs. While CN and CH indices are correlated in M22, they show an anti-correlation in NGC 288. However, NGC 1851 shows no difference in CH between two groups of stars having different CN strengths. The CN bimodality in these GCs could be explained by pollution from intermediate-mass asymptotic giant branch stars and/or fast-rotating massive stars. For the presence or absence of calcium bimodality and the differences in CN-CH relations, we suggest these would be best explained by how strongly type II supernovae enrichment has contributed to the chemical evolutions of these GCs.

On the origin of blue straggler stars in dwarf galaxies

  • Kim, Hak-Sub;Han, Sang-Il;Joo, Seok-Joo;Yoon, Suk-Jin;Lee, Young-Wook
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.86.2-86.2
    • /
    • 2017
  • Blue stragglers (BSs) are the objects that are brighter and bluer than the stars at main-sequence turn-off point. In this study, we present the Ca-by and VI photometry for Galactic dwarf spheroidal galaxies using Subaru/Suprime-Cam and investigate the spatial distribution characteristics of BS stars using the hk index as a photometric metallicity indicator. We compare the cumulative radial distribution of the BS stars with those of two groups of red-giant-branch (RGB) stars divided by the hk-index strength, and find that the spatial distribution of all BS stars is closer to that of hk-weak (i.e. metal-poor) RGB stars. We also find that the hk-strong BS stars are more centrally concentrated than the hk-weak ones. We will discuss the use of hk-index as a metallicity indicator for the hot BS stars and suggest possible explanations for the results in terms of the origin of BS stars in the dwarf gal.

  • PDF

Discovery of a New Globular Cluster Candidate Hidden behind the Milky Way

  • Ryu, Jinhyuk;Lee, Myung Gyoon
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.84.2-84.2
    • /
    • 2014
  • We report the discovery of a new Milky Way globular cluster (GC) candidate in the Galactic plane. We found this object during our WISE survey of star clusters in the Milky Way. We derived physical parameters of this object using the 2MASS JHK photometry. The color-magnitude diagram of the resolved stars shows a well-developed red giant branch (RGB). We derived its reddening, distance and metallicity. These results indicate that it is probably an old globular cluster, located behind the Galactic disk.

  • PDF

Multiple Stellar Populations of Galactic Globular Clusters NGC 6656 and NGC 6723

  • 천상현;손영종;이영욱;한상일;노동구;이재우
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.143.1-143.1
    • /
    • 2011
  • Deep Ca,b,y images obtained from the CTIO 4m Blaco telescope are used to investigate the multiple stellar populations of red giant branch (RGB) and sub-giant branch (SGB) in Galactic globular clusters NGC 6656 and NGC 6723. For NGC 6656, confirming the result of Lee et al. (2009), we find two discrete populations of the RGB stars of which mean color separation is about 0.2 mag in hk[=(Ca-b)-(b-y)] index. Furthermore, we also find the bimodel distribution of the SGB stars in (hk, y) color-magnitude diagram. A new finding is that the (hk, y) color-magnitude diagram of NGC 6723 shows two distinct RGB stars with different calcium abundances of which mean color separation is about 0.12 mag in hk index. This multiple stellar feature has not been observed in previous observation, suggesting that NGC 6723 may also be a possible relic of dwarf galaxies that merged into the Milky Way in the past. Thus our result adds further constraints to the merging scenario of the Galaxy formation. Unfortunately, the split of SGB stars in NGC 6723 is not obvious. We will present some statistical results to compare properties of two populations in two clusters.

  • PDF