• Title/Summary/Keyword: red color pigments

Search Result 137, Processing Time 0.025 seconds

Characterization of lycopene pigments by steric effect of polymer adsorption layer (고분자 흡착층의 입체장해효과를 이용한 라이코펜 색소의 특성분석)

  • Bae, Jihyun;Jung, Jongjin;Lee, Seungho;Kim, Woonjung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.357-366
    • /
    • 2017
  • Natural pigments are materials that express color and have been used in foods, cosmetics, medicine and so on. Since natural pigments are extracted from animals and plants, they are not uniform in size. Red pigments in particular are more lipophilic than other color pigments and tend to aggregate easily in aqueous solutions which make it difficult to reproduce the specific color due to size change. Found to be an allergen and the growing aversion for it to be used in foods, cochineal pigment, an animal pigment used for red pigments is being used less. In this study, red vegetable pigment lycopene extract and gardenia yellow was made uniform in size by ball-milling, then asymmetrical flow-field flow fractionation (AsFlFFF) and dynamic light scattering (DLS) were used to measure the size, and a color meter was used to confirm the color. Experimental results showed that the pigment particles were large in size and size distribution was wide before milling, but the size of the particles decreased and size distribution narrowed after milling. Color meter measurements showed that as the milling time increased, the size of the pigment particles decreased and the brightness, redness, and yellowness increased indicating a bright red color.

Changes in Carotenoid Pigments of Oleoresin Red Pepper during Cooking (고추 Oleoresin 의 가열조리중 Carotenoid 색소의 변화)

  • 최옥수;하봉석
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.2
    • /
    • pp.225-231
    • /
    • 1994
  • As the way of mass process of red pepper, extraction of oleoresin, which is labile during distribtuion and long-term storage, is alternative way to minimize markdown of red pepper quality. Changes of carotenoid pigments in modified oleoresin during cooking at high temperature were investigated. Dried red peperwas milled to 100 mesh of size particle and oily compounds were extracted by reduced pressure steam distillation. The rest part was reetracted and concentrated. The extracts were combined . The same volume of water and 4 % of polyglycerol condensed ricinoleate (PGDR) were added to the combined extract, and emulsified to make oleroesin. Capsanthin among dried red pepper, was the most abundant carotenoid (97.80mg%) followed by $\beta$ -cartoene, cryptoxanghin ,violaxanthin, crypotocapsin, and capsorubin. Oleoresin is acquiesce in the same order of raw red pepper. Transmittal of color components from raw red pepper to oleroresin was over 85% in cryptoxanthin, crytocapsin, and $\beta$ -carotene, over 70% in capsolutein and hydroxycapsolutein, and under 50% in antheraxanthin and mutatoxanthi Crytocapsin cryptoxanthin, an capsorubin in oleoresin red pepper were remained 72.1, 51.8 and 25.25, respectively, after cooking for 5hours at10$0^{\circ}C$. Color compounds were unsteady by cooking , About 90% of color compounds were destroyed by 3 hours cooking at 15$0^{\circ}C$. But, they were more thermostable under nitrogen circumstance than air one.

  • PDF

Diagnosis of Coloration Status and Scientific Analysis for Pigments to Used Large Buddhist Painting(Gwaebultaeng) in Tongdosa Temple (통도사 괘불탱의 채색상태 및 사용 안료의 과학적 분석)

  • Lee, Jang Jon;Ahn, Ji Yoon;Yoo, Young Mi;Lee, Kyeong Min;Han, Min Su
    • Journal of Conservation Science
    • /
    • v.33 no.6
    • /
    • pp.431-442
    • /
    • 2017
  • The purpose of this study is to reveal that coloring status and the degree of damage and the kinds of pigments used in large buddhist painting (Gwaebultaeng) of Tongdosa temple using a scientific analysis methods. It was observed that the physical damage patterns of the Gwaebultaeng were folding, lifting, fading, and peeling. Lead red, cinnabar and organic pigments were used as red pigments. Malachite and atacamite were used as green pigments, azulite and lazulite were blue pigments, lead white and talc were white pigment. It is estimated that overlapping organic pigments on the lead white were used as the yellow pigment and carbon was the black pigment. Through the analysis of the particle status of the pigments, it was confirmed that different types of raw materials were used for the green pigment, and the crystal form was easily distinguishable. Also, the dark blue color and the light blue color differed from each other depending on the size and shape of the raw material particles. Yellow and purple colors were organic pigments which did not have a graininess. The yellow and purple colors were organic pigments free from the graininess, and the pigments of dark red pigments was found to be mixed with the orange color pigments and carbon particles.

산란계 사료에 천연 및 합성착색제 첨가가 산란성적, 난질, 난황의 지방산 농도에 미치는 영향

  • 김창혁;이성기;이규호
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2002.11a
    • /
    • pp.113-115
    • /
    • 2002
  • Two experiments were conducted to compare the effects of the natural and the synthetic commercial pigments on the laying performance, pigmentation and fatty acid contents in egg Yolk of laying hens. Feed intake, egg production, egg weight and feed efficiency did not have significant difference(p〈0.05) in experiments I and II. White height and haugh unit did not have significant difference(p〈0.05) in two experiments. In order to approach the yolk pigmentation to 12∼13 of Roche color fan, addition level of natural red pigment was 25∼30 ppm. In the case of synthetic red pigment, the level was 15∼20 ppm. In this experimental condition, the pigmenting effect of the synthetic pigment had better than that of the natural pigment. In the experiment 2, the Pigmenting effect of mixing Pigments were inveatigated between TM2 mixed with natural red pigment, and TM6 mixed with synthesis red pigment. The fatty acid content in yolk was not affected by pigment addition.

  • PDF

Effects of Color Pigments on the Hanji Deterioration (체색용 안료가 한지의 열화에 미치는 영향)

  • Nam, Hyun-Ju;Cho, Kyoung-Sil;Choi, Tae-Ho
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.2
    • /
    • pp.70-79
    • /
    • 2015
  • This study was carried out to analyze deterioration characteristics of color-pigments painted Hanji to preserve and restore the cultural properties. On the traditional painting technique, glue was used with pigments in various ways for painting, but it eventually caused the deterioration of paintings. Thus, five colors were selected and analyzed for this study for investigating their characteristics of deteriration. Three kinds of glues (Wugyo, Nokgyo, and Togyo) and two kinds of pigments (Chinese and Gilsang) were painted on the Hanji for the accelerated aging test. And then color fastness of pigments and tensile strength of painted Hanji were measured for the estimation of deterioration degree. The results of SEM-EDS showed that Chinese pigments including blue, yellow, green, and red were composed of inorganic substances but the brown was organic substance. Gilsang pigments were composed mainly of Si and Ti ions. Color fastness of the Gilsang pigment blue, yellow, green, and brown were better than those of Chinese. Chinese pigment brown with organic substance showed the worst color fastness. Generally, Chinese pigments painted Hanji showed higher tensile strength than Gilsang in the accelerated aging test. Hanji treated with Chinese pigment and Nokgyo (antler glue) blends and Gilsang pigment and Togyo (rabbit pelt glue) blends showed higher tensile strength than the others. And Andong Hanji showed the highest tensile strength.

Synthesis and Characterization of (Cr, Fe)-doped Y2O3-Al2O3 Red Pigments ((Cr, Fe)-doped Y2O3-Al2O3계 붉은 안료의 합성과 특성)

  • Shin, Kyung-Hyun;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.4
    • /
    • pp.350-356
    • /
    • 2009
  • Perovskite codoped with chromium and iron have been studied. Samples with $YAl_{0.96}(Cr_{0.04-x}Fe_x)O_3$(x=0.01, 0.02, 0.03, 0.04) were prepared by solid state reaction at $1450^{\circ}C$ for 6 h and were characterized by XRD, FT-IR, Raman spectroscopy, SEM and UV-vis spectrophotometer. The color of the synthesized pigments were from red to dark brown(in bulk). Up to 0.02 mole $Fe_2O_3$ for substituting $Cr_2O_3$ development of color in lime-glaze gives good red color but as increasing amount of $Fe_2O_3$ and decreasing $Cr_2O_3$ proportionally produce from brownish red to brown. Increasing $Fe_2O_3$ amount lead to weaken crystal field relatively due to have smaller ionic radius than $Cr_2O_3$ ionic one. The UV-vis peaks were shifted to lower wavelength.

The Nondestructive Analysis of the Pigments on the Korean 12-fold scheen, Haehakbando-do (해학반도도 채색안료에 대한 비파괴 특성 분석)

  • Kim, Gyu-ho;Song, Yuo-na;Lim, Duck-su;Song, Jeong-ju
    • 보존과학연구
    • /
    • s.28
    • /
    • pp.121-147
    • /
    • 2007
  • A large variety of mineral pigments has been used for Korean paintings and it has known that organic pigments have been used together on the Buddhist painting and the portrait. Haehakbando-do, which is from Honolulu Academy Museum in the United States, 12-fold screen was commissioned by Court of the late Joseon Dynasty in order to pray for the King's longevity. Therefore, it seems that all material used including pigments were selected very carefully and a great deal of technical effort was gone into its process. The purposes of this research were to estimate the pigments and the contributory elements of each color used on Haehakbando-do, in accordance with the conservation treatment carried out by Gochang Conservation Institute throughout last year. Without extracting sample, property of pigment was measured by nondestructive method, X-ray spectral analysis, and by comparing with the data about ancient pigments. In spite of the limited range of pigment analysis by nondestructive method, it should be noted that this method would not cause damage to the cultural properites. White pigment was found in all colored parts except the background, so it can be suggested that white color was used as a grounding of other color pigments. This would be flake white[$2PbCO_3{\cdot}Pb(OH)_2$] as Pb was found. Pb was the only element could be found in yellow, however, it can be organic pigment like Gamboge as same as background. Red would be Cinnabar (HgS) as hydrargyrum (Hg) was detected. For the light purple in cloud, organic pigments were probably used since any element is not detected except for Pb, which is used for background. It is possible that green color is the mixture of Malachite[$CuCO_3{\cdot}Cu(OH)_2$] and Azurite [$2CuCO_3{\cdot}Cu(OH)_2$], which share Cu as their main element. Azurite[$2CuCO_3{\cdot}Cu(OH)_2$] was used for bluish pigments. Black is carbon compound. For gold, solid gold (Au) was detected. It shows that gold was gilded on the flake white background. Red painted on the frame of screen was identified as Cinnabar (HgS) and the gold pattern was solid gold (Au). The supporting leg of folding screen was made of brass because both copper and zinc were detected. In conclusion, white pigment was used as grounding of all colors of Haehakbando-do, and specific pigments were used for each color. Additionally, result from the analysis of several pigments shows that mineral pigment and organic pigment, or different mineral pigments were mixed to make various colors.

  • PDF

Detection of Spurious Jindo Hongju

  • Choi, Kap-Seong;Song, Bo-Hyeon;Kim, Jung-Ho
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 1996.04a
    • /
    • pp.25-25
    • /
    • 1996
  • ;Jindo Hongju is an unique red-colored traditional distilled wine of Korea. The unique attractive color of Jindo Hongju is due to the pigments of gromwell (Lithospermum erythrorhizon) root, derivatives of naphtoquinone such as shikonin and acetylshikonin. Which are extracted during the distillation process. The attractive color of the gromwell pigments is easily changed to dark red or to brown causing deterioration of the Quality of Jindo Hongju. Due to the discoloration of the pigments and to the limited supply of gromwell roots, some brewers manufacture spurious Jindo Hongju using artificial colorants. This study was performed to devise a simple method of detecting spurious Jindo Hongju products. The color of the gromwell pigments was greatly affected by pH change and the change could be demonstrated by the change of the absorption spectrum. At pH 4.0 the normal pH of Jindo Hongju, the absorption spectra of gromwell pigments and genuine Hongju products showed an absorption maximum of 520 nm. The absorption maximum was shifted to 570 nm and to 616 nm as the pH was raised to 7.0 and 11.0 respectively. This transition due to the pH change was also demonstrated on em chromaticity diagram. The characteristic transition due to pH change of gromwell pigment solution was not observed with an artificial colorant (red No.2) which was suspected to be used in the manufacture of imitation products. The absorption spectra of most of the Jindo Hongju collected from the market were similar to that of the gromwell pigments and showed the characteristic transition due to pH change with the addition of NaOH. However, with a few of the products, the absorption spectra was similar to that of the artificial colorant and the characteristic transition due to pH change was not observed, indicating these products might have been forged. The result of study suggests that the transition of the absorption spectrum and the change of the color due to pH change be used for the detection of imitation products. Farther more, since, at pH above 9.0, the color of the gromwell pigments and genuine Jindo Hongju could be visually differentiated from that of the artificial colorant and forged products, it might be possible that the forged products be easily detected by raising the pH to above 9.0 and visually comparing the color with that of the gromwell pigment at the same pH.me pH.

  • PDF

Analysis of Paint Pigments on King's Silk Ceremonial Robe with Nine Symbols (은조사 구장복의 채색안료 분석)

  • Yun, Eunyoung;Kang, Hyungtae
    • Conservation Science in Museum
    • /
    • v.15
    • /
    • pp.66-77
    • /
    • 2014
  • A gujangbok is a king's silk ceremonial robe embroidered with nine symbols that represent the essential virtues that a king needs to govern his country. The National Museum of Korea currently own a gujangbok worn by King Gojong in the late Joseon Dynasty. The robe is painted with various colors, including red, yellow, blue, green, and gray. μ-XRF and analysis was conducted on the pigments, and it was found that the red color was made from cinnabar, the yellow color was gold and brass, the blue color was a blue organic pigment and white lead, the green color was a synthetic pigment composed of copper and arsenic, and the gray color pigment was silver. Also, the pigments were compared to those used to make the patterns of a queen's ceremonial robe and a front cloth panel, both made around the same time and also owned by the National Museum of Korea. The comparative analysis revealed clear differences and similarities between the various pigments. The resulting data expect to serve as a useful foundation research for future studying of the pigments used by the Joseon royal court in the late nineteenth century.