• Title/Summary/Keyword: recycling or end-of-waste

Search Result 23, Processing Time 0.02 seconds

Formaldehyde Release from Medium Density Fiberboard in Simulated Landfills for Recycling

  • Lee, Min;Prewitt, Lynn;Mun, Sung Phil
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.5
    • /
    • pp.597-604
    • /
    • 2014
  • Laboratory-scale landfills (simulated landfills) were designed to determine the formaldehyde released into air and leachate from medium density fiberboard (MDF). Simulated landfills were constructed using cylindrical plastic containers containing alternating layers of soil and MDF for a total of five layers. The highest concentration of formaldehyde was found in the air and leachate from the MDF only treatment compared to treatments containing MDF and soil. At the end of the study (28 days), formaldehyde concentrations in air and leachate from treatments containing MDF and soil decreased by 70 percent and 99 percent, respectively, while the treatment containing MDF only still released formaldehyde into the air and leachate. Therefore, waste MDF after storing 4 weeks in water may be recycled as compost or mulch based on formaldehyde leaching. Also, these data indicate soil restricts formaldehyde release into air and leachate and provides new information about the fate of wood-based composite waste containing UF resin disposed in landfills.

Method for nutrient solution extraction from used diposed diapers (일회용 폐기저귀에서 양액 추출 방안)

  • Nobel, Ballhysa;Han, Se Hee
    • Journal of Energy Engineering
    • /
    • v.29 no.3
    • /
    • pp.34-41
    • /
    • 2020
  • Used disposable diapers have been considered for a long time as a type of waste difficult to recycle and valorize due to their composite nature including plastic, cellulose pulp, a super absorbent polymer and either urine, feces or both. Therefore, the fate of disposed diapers often is either incineration or landfill burial which both have various adverse environmental impacts. However, used disposable diapers contain nutrients: cellulose is an organic matter while urine and feces contain non negligible amounts of nitrogen, phosphorus and potassium which are primary nutrients included in most chemical fertilizers used in agriculture. In a scope of waste recycling and valorization, this study focuses on developing a method to achieve nutrient solution extraction from used disposable diapers. The experiment essentially consists in shredding the diapers and letting them macerate in solutions of sodium hydroxide with various concentrations to allow breaking down of the cellulose and super absorbent polymer and release of urine and feces before sterilizing the solutions in an autoclave to remove potential coliform bacteria. At the end of the experiment, a set of parameters is measured for the final solution to identify concentrations of nutrients as well as presence or absence of harmful substances. Results are discussed and directions for future studies are suggested, which include mechanization of the diapers shredding process or added aeration to enhance nitrification and absorption of extracted nutrients from plants.

Multi-product Remanufacturing Planning on a Single Facility (단일 재생처리 설비를 이용한 다중 제품 재생계획)

  • Joo, Un Gi;Lee, Choong-ho
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.31 no.3
    • /
    • pp.240-247
    • /
    • 2005
  • Today's hightech society requires thousands of different products which ultimately result in billions of tons of materials discarded, most of which end up in landfills. Therefore industrial circles could not help thinking about environmental problems by regulations of government or pressures of consumer. Generally, the related research subjects are classified into both of environmentally conscious manufacturing and product recovery, where product recovery aims to minimize the amount of waste sent to landfills by recovering materials and parts from old or outdated products by means of recycling and remanufacturing (including reuse of parts and products). In this research, we constructed a model for remanufacturing various goods using a single facility and developed a dynamic programing(DP) algorithm based upon the optimal solution characterization. We showed the efficiency of the developed DP algorithm with a numerical example.

Analysis of a Continuous and Instantaneous Vacuum Drying System for Drying and Separation of Suspended Paricles in Waste Solvent (폐용제에 함유된 입자의 건조 및 분리용 연속식 순간 진공건조시스템 해석)

  • 구재현;이재근
    • Resources Recycling
    • /
    • v.9 no.4
    • /
    • pp.28-36
    • /
    • 2000
  • This study describes to analyze the characteristics for separation and recovery of both the dried particles and the purified solvent from the waste solvent through the vaporization process by the continuous and instantaneous vacuum drying system. The vacuum drying system for the waste solvents recovery consists of a feeding pump, a double pipe heat exchanger, a vacuum spray chamber, and a condenser. The vacuum drying system heats the waste solvent to the vapor in the double pipe heat exchanger and the expanded vapor is sprayed at the end of the tube. The vaporized solvent in the condenser are recovered. The particles in the waste solvent are separated and dried from the vapor in the vacuum spray chamber. Performance evaluation of the vacuum drying system was conducted using the mixture of the dried pigment particles and benzene or alkylbenzene as test samples. For the mixture of 10 wt% pigment particles an 90% benzene, the recovery efficiency of benzene was 88% with the purity of 99% and the recovery efficiency of dried particles was 94% with the moisture of 1.1 wt%. The size of pigment particles was decreased from $6.5\mu\textrm{m}$ to $5.6\mu\textrm{m}$ in diameter due to high speed spraying and dispersion in the vacuum drying system during drying process. Therefore, the vacuum drying system showed to be an effective method for separating particles and solvent in the waste solvent.

  • PDF

The Concept of Clean Technology

  • Clift, Roland
    • Clean Technology
    • /
    • v.1 no.1
    • /
    • pp.34-46
    • /
    • 1995
  • Clean Technology goes beyond Clean-UP (or "End of PiPe) Technologies to include Pollution prevention, waste minimisation, and cleaner production. However, the concept of Clean Technology goes deeper than changes in technology, to ways in which human needs can be satisfied sustainably. In other words, Clean Technology, concentrates on delivering a human benefit rather than making a product. Introducing cleaner technology may therefore involve new commercial relationships as well as new technological practices. In some economic sectors, this involves leasing or providing a service rather than selling a product. Life Cycle Assessment (LCA) is an important tool in Clean Technology. LCA involves determining all the resources used and all the wastes and emissions produced in providing the human benefit. Use of LCA ensures that improved environmental performance in one part of the Life Cycle is not achieved merely at the expense of more environmental damage elsewhere. Going beyond LCA, the concepts of Life Cycle Design and "metabolised" use of materials are approaches to obtain maximum benefit from materials as they pass through the human economy. "Closed-loop" use can be a component of clean technology. Looking beyond simple re-use and recycling, a material may pass through a "cascade of uses". typically a series of applications with progressively lower performance specifications. Closed-loop use necessarily involves a change in commercial practice, because the material or product must be recovered after use.

  • PDF

Introduction of sand marble wastes in the composition of mortar

  • Hebhoub, H.;Belachia, M.;Djebien, R.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.4
    • /
    • pp.491-498
    • /
    • 2014
  • During the past years, the protection of the environment has become a major concern out passing the state frontiers to reach a planetary dimension. Depository waste sites have become a serious problem in terms of their locations and costs. On the other hand, the construction industry has a leading place in terms of quantities of waste produced from the start to the end of each construction site, by the large amounts of raw materials used and their respective consequences on the environment. The recycling of quarry wastes products, of demolished concrete, bricks and large quantities of waste resulting from the transformation of marble blocks can provide ideal solutions and advantages for the preservation of the environment, to become a supplementary source of aggregates. The main purpose of this study is to show technically the possibility of recuperating the aggregates of marble wastes as a partial substitute or total in the mortars. The aggregates used in this study is a sand of marble wastes (excess loads of sand exposed to bad weather conditions) of the quarry derived from Fil-fila marble (Skikda, east of Algeria). To achieve this work, we have studied the effect of sand substitution of marble wastes in the mortar with rates of (25, 50, 75, 100%); comparing the results obtained with reference samples (0%), the properties when the samples are fresh, and the mechanical performances of mortars at solid state (loss and gain of weight, dimensional variations). The introduction of recycled sand in the mortars gives good results and can be used as granulates.

Electric vehicle battery remaining capacity analysis method using cell-to-cell voltage deviation (셀간 전압 편차를 활용한 전기자동차 배터리 잔존용량 분석 기법)

  • Gab-Seong Cho;Dae-Sik Ko
    • Journal of Platform Technology
    • /
    • v.11 no.2
    • /
    • pp.54-65
    • /
    • 2023
  • Due to the nature of electric vehicles, the batteries used for electric vehicles have a very large rated capacity. If an electric vehicle runs for a long time or an electric vehicle is abandoned due to a traffic accident, the electric vehicle battery becomes a waste battery. Even in vehicles that are being abandoned, the remaining capacity of waste batteries for electric vehicles is sufficient for other purposes. Waste batteries for automobiles are very expensive, so they need to be recycled and reused, but there was a problem that the standards for measuring the performance grade of waste batteries for recycling and reuse were insufficient. As a method for measuring the remaining capacity of waste battery, the most stable and reliable method is to measure the remaining capacity of battery using full charge and discharge. However, the inspection method by the full charging and discharging method varies depending on the capacity of the battery, but it takes more than a day to inspect, and many people are making great efforts to solve this problem. In this paper, an electric vehicle battery residual capacity analysis technique using voltage deviation between cells was studied and analyzed as a method to reduce inspection time for electric vehicle batteries. To this end, a full charging and discharging-based capacity measurement system was constructed, experimental data were collected using a nose or waste battery, and the correlation between the voltage deviation and the remaining capacity of the battery pack was analyzed to verify whether it can be used for battery inspection.

  • PDF

A Study on the Phosphorus Resources Recovery using the MAP + PACI (Ca과 응집제를 보완한 MAP법을 이용한 폐수로부터의 인 자원 회수에 관한 연구)

  • Kim, Dong-Ha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.3
    • /
    • pp.273-278
    • /
    • 2007
  • Modern society has moved from a phosphorus recycling loop, where animal manure and human wastes were spread on farming land to recycle nutrients, to a once-through system, where phosphates are extracted from mined, non-renewable phosphate rock and end up either in landfill(sewage sludge, incinerator ash) or in surface waters. In this research, crystallization of nitrogen and phosphate with natural sources of $Mg^{2+}$ in synthetic water was tested. The operational parameters of pH, mixing time, and the magnesium molar ratio were investigated to find optimal conditions of the MAP precipitation using synthetic wastewater. The removal efficiency of phosphate increased with pH up to 11. By MAP precipitaiton of the synthetic waste water, 94% of the phosphate were eliminated at pH 11. It was found that at least 10 minutes mixing time was required and 20 minutes mixing time was recommended for efficient phosphate removal. High efficiency removal of phosphate was possible when the magnesium molar ratio was 1.0~2.0. The comparative study of different magnesium sources showed that coagulants (PAC) was the more efficient sources than only magnesium. The result showed that 97% of phosphate removal. In conclusion, coagulants (PAC) induced crystallization of struvite and hydroxyapatite was shown to be a technically viable process that could prove cost effective for removing phosphate in wastewater.

A Case Study on the Estimation of the Resource Recovery Potentials by Landfill Mining (매립지 정비에 의한 순환이용 가능량 산정 사례 연구)

  • Yi, Sora;Lee, Woo Jin;Rhee, YoungJoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.1
    • /
    • pp.5-12
    • /
    • 2018
  • As many local governments have faced increasing conflicts on landfill use and the time of end use, it is difficult to provide an alternative landfill or conclude a consensus of lifespan extension for the existing landfill site. Therefore, the purpose of this study is to contribute improving of the landfill capacity by calculating the resource recovery potentials of landfilled waste previously and in the future by landfill mining. For this, rate of volume increase, weight ratio, and apparent density were adopted as major parameters and their values were calculated through previous cases. The rate of volume increase was calculated to 1.42 by averaging previous cases of three areas. The average weight ratio of soil matter was 45.6% by calculating for the three areas. For the combustible waste and incombustible waste, statistical data can be used. The apparent densities were divided by combustible waste, incombustible waste, and soil matter using an average of two areas value, i.e., $0.35ton/m^3$, $1.40ton/m^3$ and $1.58ton/m^3$. We analyzed the resource recovery potential of Cheongju landfill by using the estimated parameters. The additional landfill capacity was 45% of the existing landfill capacity by recovering landfilled waste by landfill mining. In addition, it is analyzed that the lifespan is extended to 20 years, if the combustible waste of new inputting waste is sorted and combusted for energy recovery and incineration ash, incombustible waste, and soil matter are only reclaimed into the existing Cheongju landfill. It is expected that the methodology and parameters of this study will be used as basic data when resource recovery potential is analyzed for another case study of landfill mining.

Trajectory Simulation of ASR Particles in Induction Electrostatic Separation (유도형 정전선별에서 ASR 입자의 궤적모사)

  • Kim, Beom-uk;Park, Chul-hyun
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.96-105
    • /
    • 2019
  • Automobile shredder residue (ASR) is the final waste produced when end-of-life vehicles (ELVs) are shredded. ASR can be separated using mineral-processing operations such as comminution, air classification, magnetic separation, and/or electrostatic separation. In this work, trajectory analyses of conductors (copper) and non-conductors (glass) in the ASR have been carried out using induction electrostatic separator for predicting or improving the ASR-separation efficiency. From results of trajectory analysis for conductors, the trajectories of copper wire by observation versus simulation for coarse particles of 0.5 and 0.25 mm showed consistent congruity. The observed 0.06 mm fine-particles trajectory was deflected toward the (-) attractive electrode owing to the charge-density effects due to the particle characteristics and relative humidity. In the case of non-conductors, the actual trajectory of dielectric glass deflected toward the (-) electrode, showing characteristics similar to those of conductive particles. The analyses of stereoscopic microscope and SEM & EDS found heterologous materials (fine ferrous particles and conductive organics) on the glass surface. This demonstrates the glass decreasing separation efficiency for non-ferrous metals during electrostatic separation for the recycling of ASR. Future work will require a pretreatment process for eliminating impurities from the glass and advanced trajectory-simulation processes.