• Title/Summary/Keyword: recycling of waste displays

Search Result 6, Processing Time 0.017 seconds

Trend on Recycling Technologies for Display Wastes analysed by the Patents and Literature Review (특허(特許)와 논문(論文)으로 본 폐(廢) 디스플레이 재활용(再活用) 기술(技術) 동향(動向))

  • Lee, Sung-Kyu;Lee, Chan-Gi;Hong, Hyun-Seon;Cho, Young-Ju;Cho, Bong-Gyoo
    • Resources Recycling
    • /
    • v.21 no.3
    • /
    • pp.65-73
    • /
    • 2012
  • There are several kinds of displays such as liquid crystal display (LCD), cathode ray tube (CRT), plasma display panel(PDP), light emitting diode (LED), organic light emitting diode (OLED), etc. Nowadays, recycling technologies of waste displays have been widely studied from economy and efficiency points of view. In this paper, patents and literature on the recycling technologies of the waste displays have been comprehensively analyzed. The search was limited to the open patents of USA (US), European Union (EU), Japan (JP), and Korea (KR) and SCI journals published from 1980 to 2011. Patents and journals were systematically compiled and collected using key-words search and filtered by pre-set filtering criteria. The trends of the patents and journals were thus analyzed according to the years, countries, companies, and technologies.

Current Technology Trends Analysis on the Recovery of Rare Earth Elements from Fluorescent Substance in the Cold Cathode Fluorescent Lamps of Waste Flat Panel Displays (폐디스플레이 CCFL에 존재하는 형광체 내 희토류 원소 회수 기술 동향 분석)

  • Kang, Leeseung;Shin, Dongyoon;Lee, Jieun;Ahn, Joong Woo;Hong, Hyun-Seon
    • Journal of Powder Materials
    • /
    • v.22 no.1
    • /
    • pp.27-31
    • /
    • 2015
  • Flat panel display devices are mainly used as information display devices in the 21st century. The worldwide waste flat panel displays are expected at 2-3 million units but most of them are land-filled for want of a proper recycling technology More specifically, rare earth metals of La and Eu are used as fluorescent materials of Cold Cathode Flourscent Lamp(CCFL)s in the waste flat panel displays and they are critically vulnerable and irreplaceable strategic mineral resources. At present, most of the waste CCFLs are disposed of by land-filling and incineration and proper recovery of 80-plus tons per annum of the rare earth fluorescent materials will significantly contribute to steady supply of them. A dearth of Korean domestic research results on recovery and recycling of rare earth elements in the CCFLs prompts to initiate this status report on overseas research trends and noteworthy research results in related fields.

Analysis for Valuable Materials Disassembled from 40- and 42-inched Waste LCDs (Liquid Crystal Displays) (폐 중형 (40인치와 42인치) LCD (Liquid Crystal Display) 제품 해체 후 분리된 유가자원에 대한 분석)

  • Park, Hun-Su;Kim, Yong;Hong, Hyun Seon
    • Resources Recycling
    • /
    • v.25 no.2
    • /
    • pp.42-48
    • /
    • 2016
  • Although the generation of waste flat panel displays in Korea is expected to exceed one million sets in 2016, a comprehensive recycling technology has not yet been developed for effective recovery of valuable materials from the wastes, rendering to outshine the national prestige as a global leader in display industries. The overall aim of this study was to analyze the statistical data of various valuable materials and their ratio after dismantling 40-inch and 42-inch sized waste LCDs. The analysis results showed that plastic portion of the wastes was about 22% and the portion of PCB (Print Circuit Board) part was about 9% by weight whereas panel part was about 34% and leftovers including metals totalled about 35% by weight. Based on the analytical results, a higher value recycling process could be proposed with advanced material separation techniques.

Current Research Trend on Recycling of Waste Flat Panel Display Panel Glass (폐 평판디스플레이 패널유리의 재활용 연구 동향)

  • Shin, Dongyoon;Kang, Leeseung;Park, Jae Layng;Lee, Chan Gi;Yoon, Jin-Ho;Hong, Hyun Seon
    • Resources Recycling
    • /
    • v.24 no.1
    • /
    • pp.58-65
    • /
    • 2015
  • Although Korea is a top market sharing and world leading producer and developer of flat panel display devices, relevant recycling technology is not up to her prestigious status. Besides, most of the waste glass arising from flat panel displays is currently land-filled. The present paper mainly reviews on development of recycling systems for waste TFT-LCD glass from end-of-life LCD TVs and monitors and TFT-LCD process waste of crushed glass particles with target end uses of raw material for high strength concrete pile and glass fibers, respectively. Waste LCD glass was recycled to fabricate ingredients for high strength concrete piles with enhanced physical properties and spherical foam products. The waste LCD glass recycling technology is already developed to fabricate long and short fibers at commercial level. In view of these, future R & D on waste LCD glass materials is to be directed toward implementation of commercial materials recycling system therefrom.

Disassembly and Compositional Analysis of Waste LCD Displays (폐(廢) 디스플레이의 해체(解體) 및 성분조사(成分調査))

  • Lee, Sungkyu;Kang, Leeseung;Lee, Chan Gi;Hong, Myung Hwan;Cho, Sung-Su;Hong, Hyun Seon
    • Resources Recycling
    • /
    • v.22 no.2
    • /
    • pp.29-36
    • /
    • 2013
  • Although Korean domestic production of flat panel displays totalled more than 48 trillion KRW in 2007, most of the flat panel display wastes have been land-filled or incinerated, which greatly overshadows Korean national prestige as a world leading producer and developer of flat panel display devices. Countries such as Japan or EU possess quite limited land-fill capability and have sought ways to dispose of WEEEs from environment-friendly perspective rather than recovery of valuable materials from the wastes. Considering relatively short cycle of about 5 years for flat panel display devices, it is estimated that more than 5 million units will be accumulated as wastes by 2015. Urban mining is a most suitable countermeasures against China's monopoly of rare and rare earth metals, which are contained in flat panel display wastes. Therefore, materials recycling of waste LCD units has to be developed and commercialized soon enough for economic and environment-friendly recovery of valuable resources hidden in LCD wastes.

Overview and Future Concerns for Recycling Glass Wastes (폐(廢)스마트 유리제품(琉璃製品) 재활용(再活用) 현황(現況)과 기술(技術) 전망(展望))

  • Hong, Hyun Seon;Cho, Bong-Gyoo
    • Resources Recycling
    • /
    • v.22 no.4
    • /
    • pp.22-32
    • /
    • 2013
  • Glass materials possess unique functional characteristics of ceramics different from those of metals, which has marked glass as one of the mainstay materials in the history of mankind. Nowadays, industrial sophistication necessitates comparable "smart" attributes of glass materials as a significantly advanced form of sophistication. Smart glasses are increasingly applied in many state-of-the-art digital appliances such as displays and semiconductors and waste is also expected to accumulate therefrom in the near future: More than 60,000 tons of smart glass wastes were reported as of 2012, for example. In the present paper, current status of domestic Korean smart glass industry and related recycling enterprise have been comprehensively investigated. Finally, Korean domestic smart glass recycling technology and its future prospect are also briefly presented.