• Title/Summary/Keyword: recycling efficiency

Search Result 766, Processing Time 0.024 seconds

Mitigation of Methane Emission and Energy Recycling in Animal Agricultural Systems

  • Takahashi, J.;Mwenya, B.;Santoso, B.;Sar, C.;Umetsu, K.;Kishimoto, T.;Nishizaki, K.;Kimura, K.;Hamamoto, O.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.8
    • /
    • pp.1199-1208
    • /
    • 2005
  • Abatement of greenhouse gas emitted from ruminants and promotion of biogas energy from animal effluent were comprehensively examined in each anaerobic fermentation reactor and animal experiments. Moreover, the energy conversion efficiency of biomass energy to power generation were evaluated with a gas engine generator or proton exchange membrane fuel cell (PEMFC). To mitigate safely rumen methanogenesis with nutritional manipulation the suppressing effects of some strains of lactic acid bacteria and yeast, bacteriocin, $\beta$1-4 galactooligosaccharide, plant extracts (Yucca schidigera and Quillaja saponarea), L-cysteine and/or nitrate on rumen methane emission were compared with antibiotics. For in vitro trials, cumulative methane production was evaluated using the continuous fermented gas qualification system inoculated with the strained rumen fluid from rumen fistulated Holstein cows. For in vivo, four sequential ventilated head cages equipped with a fully automated gas analyzing system were used to examine the manipulating effects of $\beta$1-4 galactooligosaccharide, lactic acid bacteria (Leuconostoc mesenteroides subsp. mesenteroides), yeast (Trichosporon serticeum), nisin and Yucca schidigera and/or nitrate on rumen methanogenesis. Furthermore, biogas energy recycled from animal effluent was evaluated with anaerobic bioreactors. Utilization of recycled energy as fuel for a co-generator and fuel cell was tested in the thermophilic biogas plant system. From the results of in vitro and in vivo trials, nitrate was shown to be a strong methane suppressor, although nitrate per se is hazardous. L-cysteine could remove this risk. $\beta$1-4 galactooligosaccharide, Candida kefyr, nisin, Yucca schidigera and Quillaja saponarea are thought to possibly control methanogenesis in the rumen. It is possible to simulate the available energy recycled through animal effluent from feed energy resources by making total energy balance sheets of the process from feed energy to recycled energy.

Set up and Running Status of School Gardening at Elementary Schools - Focus on Jeollabuk-do (초등학교 학교 텃밭의 조성현황과 운영실태 분석 - 전북지역을 중심으로)

  • Jang, Yoonah;Jeong, Sun Jin;Han, Kyeong Suk;Gim, Gyung Mee;Choi, I Jin;Heo, Joonyung
    • The Korean Journal of Community Living Science
    • /
    • v.28 no.4
    • /
    • pp.613-623
    • /
    • 2017
  • This study was conducted to investigate the set up and running status of school gardening at elementary schools in Jeollabuk-do. Among 416 elementary schools in Jeollabuk-do, 164 schools (39.4%) had school gardens. Ninety-seven schools in cities and 67 in counties had school gardens. The total area and school garden size at schools in Jeollabuk-do were $45,490m^2$ and $277m^2$ per school, respectively, as well as $1.6m^2$ per students. School gardens varied in type, and percentages of outdoor and off-campus gardens were 67.2% and 17.2%, respectively. There were differences in the set up, type of garden, annual operating budget, and participants in school garden programs according to the location (city or county) of the school The installation and automation of facilities in the garden (such as greenhouse, tool shed, resource recycling facility, etc.) were poor. Most schools grew various kinds of plants, including vegetables, crops, ornamentals, and fruits. Teachers most often operated school gardens and taught students. Teachers had difficulty managing school gardens due to absence of knowledge about sustaining gardens. Most respondents reported the need for a school garden training program. Sixty-one percent of schools reported that the garden was used for academic instruction, especially during class. The majority of respondents agreed that school gardens have a positive effect and wanted to increase classes related to school gardens. Accordingly, in order to sustain school gardens and maximize their effects, systematic and customized support is needed that considers the characteristics and circumstances of the school. The facilities and features of the garden should be improved, and the school garden training program for teachers should attempt to reduce the effort required to manage the garden and increase utilization efficiency. In addition, participation of garden coordinators, parents, and community volunteers in managing gardens and implementing garden lessons is required.

Analysis of an Immobilized β-Galactosidase Reactor with Competitive Product Inhibition Kinetics (경쟁적 저해를 갖는 고정화 β-galactosidase 반응기의 해석)

  • Kang, Byung Chul
    • Journal of Life Science
    • /
    • v.23 no.12
    • /
    • pp.1471-1476
    • /
    • 2013
  • The present study deals with the immobilization of Kluyveromyces lactis ${\beta}$-galactosidase on a weak ionic exchange resin (Duolite A568) as polymer support. ${\beta}$-Galactosidase was immobilized using the adsorption method. A kinetic study of the immobilized enzyme was performed in a packed-bed reactor. The adsorption of the enzyme followed a typical Freundlich adsorption isotherm. The adsorption parameters of k and n were 14.6 and 1.74, respectively. The initial rates method was used to characterize the kinetic parameters of the free and immobilized enzymes. The Michaelis-Menten constant ($K_m$) for the immobilized enzyme (120 mM) was higher than it was for the free enzyme (79 mM). The effect of competitive inhibition kinetics was studied by changing the concentration of galactose in a recycling packed-bed reactor. The kinetic model with competitive inhibition by galactose was best fitted to the experimental results with $V_m$, $K_m$, and $K_I$ values of 46.3 $mmolmin^{-1}mg^{-1}$, 120 mM, and 24.4 mM, respectively. In a continuous packed-bed reactor, increasing the flow rate of the lactose solution decreased the conversion efficiency of lactose at different input lactose concentrations. Continuous operation of 11 days was conducted to investigate the stability of a long-term operation. The retained activity of the immobilized enzymes was 63% and the half-life of the immobilized enzyme was found to be 15 days.

The Study on Automatic Temperature Transmission System for the Heating pipe at Home (가정식난방배수관내의자동온도송신장치에대한연구)

  • Park, Chul-Min;Jo, Heung-Kuk;Lee, Hoon-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2641-2646
    • /
    • 2009
  • The more growing on home automation system at automatic control, the more efficiency required for energy consumption and for recycling energy in near future. Heating is essential in general apartment. Heating method is two types in apartment. One uses electricity, and other one uses warm water. If use electricity, is not efficient by rise of electric charges. But, It can reduce much in expense aspect, if use warm water. When use warm water, temperature of warm water is not equal from all pipe parts. Therefore, indoor tempera can be unequal with set point. Solution of these problems is as following. Temperature sensor in warm water attach pipe. The measured temperature transmits by real time. Temperature of warm water controls in receiver side. In this paper, we propose an automatic temperature transmission system for the heating pipe at home, that is a low-power based, and supply the energy source from a small AC motor resided in bottom cement mortal. The proposed system is used in power mechanism from a collision process of water-jet using propeller water-difference and also designed a CPU module by Atmega8 at ATMEL co., Inc. and a communication module by CC1020 at Chipcon co., Inc.

Failure Mode and Effect Analysis for Remanufacturing of the Old Extrusion Press (노후 압출기의 재제조를 위한 고장모드 영향분석)

  • Jung, Hang-Chul;Yun, Sang-Min;Oh, Sang-Ho;Baeg, Chang Hyun;Kong, Man-Sik
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.297-305
    • /
    • 2021
  • In the domestic aluminum industry, the extrusion process is a major process accounting for more than 40% of the total production. However, most domestic aluminum extrusion companies produce aluminum using old equipment that is more than 30 years old. Extrusion press is when the equipment is not replaced before the wear and breakage of major parts occur, reducing productivity and increasing the defect rate compared to new equipment. The old extrusion press often loses part drawings, so it is difficult to repair them properly on-site and to remanufacture them due to the lack of technical skills for maintenance. Therefore, a systematic remanufacturing plan must be designed from dismantling the equipment. In this study, remanufacturing FMEA was devised to remanufacture old extrusion press. The risk priority was analyzed by considering the degree of damage to the recycled parts, the cycle due to breakage/damage during the extrusion process, and the value of recycling resources due to remanufacturing. To standardize the remanufacturing process, remanufactured FMEA was performed through part analysis according to the structural analysis of the extrusion press. In addition, remanufacturing priorities were selected for each part, while remanufacturing itself was studied for efficiency of resource circulation and product quality stabilization.

A Study on the RDF Manufacturing of Coffee grounds by using Pilot scale Oil-drying Equipment (Pilot scale 유중건조 장비를 이용한 커피찌꺼기의 고형연료화 연구)

  • Kwon, Ik-Beom;Ha, Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.443-450
    • /
    • 2019
  • We studied to find the optimal manufacturing conditions of coffee grounds sludge RDF with oil drying method. We expanded the lab scale to pilot scale to compare the efficiency of the oil-drying equipment and The selection of the ratio of coffee grounds and oil, the setting temperature, and the temperature change and water content with time were measured. In order to analyze the characteristics of the research results, characteristics of solid fuels produced(Coffee grounds of oil-dried) by calorimeter, TGA, combustion equipment, and combustion gas measuring instrument were analyzed. As a result, the ratio of oil to coffee grounds was 4: 1, and when the setting temperature was set to $300^{\circ}C$, the water content reached 10wt.% or less within 20 minutes. ln addition, it showed high calorific value of 6,273kcal/kg. However, coffee grounds had a similar composition to wood and showed high luminance and produced a lot of CO in combustion gas. As a result, it is considered to be unsuitable for thermoelectric power plant and camping fuel, but the initial ignition speed is high and the heat generation is high, so it is considered that it can replace the fuels for current use.

Engineering Characteristics of CLSM Using Bottom Ash and Eco-friendly Soil Binder (친환경 고결제와 저회를 활용한 유동성 복토재의 공학적특성)

  • Park, Giho;Kim, Taeyeon;Lee, Yongsoo;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.5
    • /
    • pp.23-29
    • /
    • 2019
  • In general, pipe laying works are performed by constructing underground facilities such as pipes and then refilling the rest of the area with sand or soil. However, there are many problems in the compaction process such as difficulties in tampering around the underground facility and low compaction efficiency. Such problems cause deformation and damage to the underground pipes during refilling work and ultimately cause road sinks. Construction methods using CLSM are one of the typical methods to solve these issues, and recently, studies on CLSM using coal ash, which has similar engineering properties as sand, have been actively performed to protect environment and recycle resources. While many studies have been conducted to recycle fly ash in many ways, the demand for recycling bottom ash is increasing as most of the bottom ash is not recycled and reclaimed at ash disposal sites. Therefore, in order to find bottom ash applications using eco-friendly soil binders that are environmentally beneficial and conform with CLSM standards, this study investigated flow characteristics and strength change characteristics of eco-friendly soil binders, weathered granite soil, a typical site-generated soil, bottom ash, and fly ash mixed soil and evaluated the soil pollution to present CLSM application methods using bottom ash.

A Fundamental Study on Shearing/Bonding Characteristics of Interface Between Rock Mass and Backfills in Mine Openings (폐광산 채움재와 암반 경계부의 전단 및 접합특성에 관한 기초 연구)

  • Kim, Byung-Ryeol;Lee, Hyeon-woo;Kim, Young-Jin;Cho, Kye-Hong;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.623-646
    • /
    • 2021
  • As the demand for electric power increases with acceleration of electrification at home and abroad, the needs for coal-fired electrical power plant are accordingly increased. However, these coal-fired electrical power plants induce also many environmental problems such as increase of air pollutants, increase of possibility of land contamination by reclamation of coal ash, even though these power plants have a good economical efficiency. In case of a by-product of coal-fired electrical power plants, only 70% of them are recycled and the remaining 30% of by-product are fully buried in surrounding ground. Consequently, this study deals with coal ash backfilling mechanism in abandoned mine openings for the purposes of increasing the coal ash recycling rate as well as securing the mine area stability. In order to analyze the backfill and ground reinforcement by interaction between rock mass and backfills, the copying samples of discontinuous surface with different roughnesses were produced for bond strength tests and direct shear tests. And statistical analysis was also conducted to decide the characteristics of bond and shear behavior with joint roughness and their curing day. Numerical simulations were also analyzed for examining the effect of interface behavior on ground stability.

Characterization of Burcucumber Biochar and its Potential as an Adsorbent for Veterinary Antibiotics in Water (가시박 유래 바이오차의 특성 및 항생물질 흡착제로서의 활용가능성 평가)

  • Lim, Jung Eun;Kim, Hae Won;Jeong, Se Hee;Lee, Sang Soo;Yang, Jae E;Kim, Kye Hoon;Ok, Yong Sik
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.1
    • /
    • pp.65-72
    • /
    • 2014
  • Biochar (BC) from biomass pyrolysis is a carbonaceous material that has been used to remove various contaminants in the environment. The eliminatory action for burcucumber (Sicyos angulatus L.) as an invasive plant is being consistently carried out because of its harmfulness and ecosystem disturbance. In this study, burcucumber biomass was converted into BCs at different pyrolysis temperatures of 300 and $700^{\circ}C$ under a limited oxygen condition. Produced BCs were characterized and investigated to ensure its efficiency on antibiotics' removal in water. The adsorption experiment was performed using two different types of antibiotics, tetracycline (TC) and sulfamethazine (SMZ). For the BC pyrolyzed at a high temperature ($700^{\circ}C$), the values of pH, electrical conductivity, and the contents of ash and carbon increased whereas the yield, mobile matter, molar ratios of H/C and O/C, and functional groups decreased. Results showed that the efficiency of BCs on antibiotics' removal increased as pyrolysis temperature increased from 300 to $700^{\circ}C$ (38 to 99% for TC and 6 to 35% for SMZ). The reaction of ${\pi}-{\pi}$ EDA (electron-donor-acceptor) might be involved in antibiotics' adsorption to BCs. BC has potential to be a superior antibiotics' adsorbent with environmental benefit by recycling of waste/invasive biomass.

Treatment of Garbage Leachate with Two-phase Anaerobic Digestion Coupled with Ultra Filtration (막결합형 2상 혐기성 소화 공정을 이용한 음식물 탈리액 처리)

  • Lee, Eun-Young;Kim, Hyung-Kuk;Giang, Luu Thi Thuy;Bae, Jae-Ho;Bae, Young-Shin;Won, Jong-Choul;Lee, Jae-Hoon;Park, Seung-Kyun;Cho, Yong-Wan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.997-1006
    • /
    • 2009
  • Organic removal efficiency and methane production rate, a feasibility of power generation from biogas, and the optimum conditions for membrane operation were evaluated for the pilot scale (5 tons/day) two-phase anaerobic digestion coupled with ultra filtration (TPADUF) system fed with garbage leachate. The TPADUF system is consisted of a thermophilic acidogenic reactor, a mesophilic methanogenic reactor, and an UF membrane. When garbage leachate with 150 g/L of TCOD was fed to the TPADUF up to organic loading rate (OLR) of 11.1 g COD/L/d, the effluent TCOD was lower than 6 g/L and the average removal efficiencies of TCOD and SCOD were higher than 95%. The methane composition of the gas was 65%, and the methane yield was 39 $m^3/m^3$ garbage leachatefed, 260 $m^3$/tons $COD_{added}$, or 270 $m^3$/tons $COD_{removed}$, even there was some gas leak. The power production per consumed gas was 0.96 kWh/$m^3$ gas or 1.49 kWh/$m^3$ methane. This lower power production efficiency mainly due to the small capacity of gas engine (15 kW class). The membrane was operated at the average flux of 10 L/$m^2$/hr. When the flux decreased, washing with water and chemical (NaOCl) was conducted to restore the flux. In the TPADUF system, optimum pH could be maintained without alkali addition by recycling the membrane concentrate or mixed liquor of the methanogenic digester to the acidogenic reactor. Also, partial production of methane in the acidogenic reactor had a positive effect on lowering the OLR of the methanogenic reactor.