• Title/Summary/Keyword: recycling HPLC

Search Result 25, Processing Time 0.018 seconds

Isolation and Identification of Macamides from the Lipidic Extract of Maca [Lepidium meyenii] using Supercritical Carbon Dioxide (초임계 이산화탄소를 이용한 maca [Lepidium meyenii]의 지질 추출물로부터 macamides 분리 및 동정)

  • Lee, Seung-Ho;Kang, Jung-Il;Lee, Sang-Yun;Ha, Hyo-Cheol;Song, Young-Keun;Byun, Sang-Yo
    • KSBB Journal
    • /
    • v.23 no.2
    • /
    • pp.153-157
    • /
    • 2008
  • Maca (Lepidium meyenii) has been used as a food and medicine in Peru for thousands of years. More recently a wide array of commercial maca products have gained popularity as dietary supplements with claims of anabolic and aphrodisiac effects. Even though the biologically active principles of maca are not fully known, the lipidic extract of maca tubers containing macamides showed promising physiological activities. In this study, the lipidic extract were collected from maca tubers by using supercritical carbon dioxide ($SCO_2$). Substance estimated as macamide in the extract was isolated and purified by preparative HPLC with recycling system. Two of the purified substance was identified as N-benzyl-5-oxo-6E,8E-octadecadienamide and N-benzylhexadecan amide by LC/MS, $^1H$-NMR and $^{13}C$-NMR analyses.

Enzymatic Synthesis and Characterization of Galactosyl Trehalose Trisaccharides

  • Kim, Bong-Gwan;Lee, Kyung-Ju;Han, Nam-Soo;Park, Kwan-Hwa;Lee, Soo-Bok
    • Food Science and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.127-132
    • /
    • 2007
  • [ ${\alpha},\;{\alpha}$ ]-Trehalose was efficiently modified by a transgalactosylation reaction of Escherichia coli ${\beta}-galactosidase$ using lactose as a donor to yield two galactosyl trehalose trisaccharides. The reaction products of trehalose by the enzyme were observed by thin layer chromatography (TLC) and high performance anion exchange chromatography (HPAEC) and were purified by BioGel P2 gel permeation chromatography and recycling preparative HPLC. Liquid chromatography-mass spectrometry (LC-MS) and ^{13}C$ nuclear magnetic resonance (NMR) analyses revealed that the structures of the main products were $6^2-{\beta}-D-galactosyl$ trehalose (1) and $4^2-{\beta}-D-galactosyl$ trehalose (2). A reaction of 30%(w/v) trehalose and 15%(w/v) lactose at pH 7.5 and $45^{\circ}C$ resulted in a total yield of approximately 27-30% based on the amount of trehalose used. The galactosyl trehalose products were not hydrolyzed by trehalose. In addition the mixture of transfer products (9:1 ratio of 1 to 2) showed higher thermal stability than glucose, lactose, and maltose, but less than trehalose, against heat treatment over $100^{\circ}C$ at pH 4 and 7. It also exhibited better thermal stability than sucrose at pH 4 alone.

Bioconversion of Piceid to Piceid Glucoside Using Amylosucrase from Alteromonas macleodii Deep Ecotype

  • Park, Hyunsu;Kim, Jieun;Park, Ji-Hae;Baek, Nam-In;Park, Cheon-Seok;Lee, Hee-Seob;Cha, Jaeho
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1698-1704
    • /
    • 2012
  • Resveratrol, or its glycoside form piceid, is a dietary antioxidant polyphenolic compound, found in grapes and red wine that has been shown to have protective effects against cardiovascular disease. However, very low water solubility of the compound may limit its application in the food and pharmaceutical industries. The amylosucrase (AMAS) of Alteromonas macleodii Deep ecotype was expressed in Escherichia coli and showed high glycosyltransferase activity to produce the glucosyl piceid when piceid was used as an acceptor. The conversion yield of piceid glucoside was 35.2%. Biotransformation using culture of the E. coli harboring the amas gene increased the yield up to 70.8%. The transfer product was purified by reverse phase chromatography and recycling preparative HPLC, and the molecular structure of the piceid glucoside was determined using NMR spectroscopy. The piceid glucoside was identified as glucosyl-${\alpha}$-($1{\rightarrow}4$)-piceid. The solubility of glucosyl piceid was 5.26 and 1.14 times higher than those of resveratrol and piceid, respectively. It is anticipated that dietary intake of this compound is more effective by enhancing the bioavailability of resveratrol in the human body because of its hydrophilic properties in the intestinal fluid.

Application for Dietary Resources by Silk Protein (실크 단백질의 식이 소재로서의 응용)

  • Yeo, Joo-Hong;Lee, Kwang-Gill;Kweon, Hae-Yong;Han, Sang-Mi;Park, Kyung-Ho;Kim, Sung-Su;Shin, Bong-Sub
    • Journal of Sericultural and Entomological Science
    • /
    • v.48 no.1
    • /
    • pp.6-10
    • /
    • 2006
  • Recently, B. mori proteins such as silk fibroin and silk sericin have been found to have a water-holding capacity, anti hydrogen peroxide toxicity, antioxidant activity and tyrosinase-inhibitory activity (Yeo 2006, Kurioka 1999 & 2004), implying its potential usefulness of the application for cosmetic and functional food(Yamazaki 1999 & Une 2000). We are tried to application for dietary resources of B. mori silk fibroin and sericin that were prepared to some of different molecular cutting these resources by preparative recycling HPLC system. In our studies with rats have demonstrated that consumption of these silk proteins are being prevents constipation effect and it is maybe enhances intestinal absorption of water and dietary effects. These some of useful results further suggest a usefulness of sericin as dietary resources for health.

Isolation of Isoflavones and Soyasaponins from the Germ of Soybean (콩 배아로 부터 Isoflavone과 Soyasaponin의 동시 분리)

  • Kim, Sun-Lim;Lee, Jae-Eun;Kim, Yul-Ho;Jung, Gun-Ho;Kim, Dea-Wook;Lee, Choon-Ki;Kim, Mi-Jung;Kim, Jung-Tae;Lee, Yu-Young;Hwang, Tae-Young;Lee, Kwang-Sik;Kim, Wook-Han;Kwon, Young-Up;Kim, Hong-Sig;Chung, Ill-Min
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.2
    • /
    • pp.149-160
    • /
    • 2013
  • The objective of present study was to simultaneously isolate of isoflavone and soyasaponin compounds from the germ of soybean seeds. Soy germ flours were defatted with hexane for 48h at room temperature, and methanolic extracts were prepared using reflux apparatus at $90^{\circ}C$ for 6h, two times. After extraction, extracts were separated with preparative RP-$C_{18}$ packing column ($125{\AA}$, $55-105{\mu}m$, $40{\times}150mm$), and collected 52 fractions were identified with TLC plate (Kieselgel 60 F-254) and HPLC, respectively. Among the identified isoflavone and soyasaponin fractions, isoflavone fractions were re-separated using a recycling HPLC with gel permeation column (Jaigel-W252, $20{\times}500mm$). Final fractions were air-dried, and the purified compounds of two isoflavones (ISF-1-1, ISF-1-2) and four soyasaponins (SAP-1, SAP-2, SAP-3, SAP-4) were obtained. Two isoflavone compounds (ISF-1-1, ISF-1-2) were acid-hydrolyzed for the identification of their aglycones, and confirmed by comparing with 12 types of isoflavone isomers. While the four kinds of soyasaponins were identified by using a micro Q-TOF mass spectrometer in the ESI positive mode with capillary voltage of 4.5kV, and dry temperature of $200^{\circ}C$. Base on the obtained results, it was conclude that ISF-1-1 is the mixture isomers of daidzin (43.4%), glycitin (47.0%), and genistin (9.6%), but ISF-1-2 is the single compound of genistin (99.8% <). On the other hand, soyasaponin SAP-1 is the mixture compounds of soyasaponin A-group (Aa, Ab, Ac, Ae, Af); SAP-2 is soyasaponin B-group (Ba, Bb, Bc) and E-group (Bd, Be); SAP-3 is soyasaponin B-group (Ba, Bb, Bc), E-group (Bd, Be), and DDMP-group (${\beta}g$); SAP-4 is soyasaponin B-group (Ba, Bb, Bc), E-group (Bd, Be), and DDMP-group (${\beta}g$, ${\beta}a$), respectively.