• Title/Summary/Keyword: recycled scraps

Search Result 20, Processing Time 0.029 seconds

Selective Removal of Cu in Ferrous Scrap by Chlorine gas (염소가스에 의한 철 스크랩 중 Cu의 선택적 제거)

  • Lee, So-Yeong;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.27 no.5
    • /
    • pp.54-60
    • /
    • 2018
  • The quality of steel produced from scrap can be adversely affected because of the buildup of tramp elements in recycled scrap. The tramp element of greatest concern is copper because of its effect on steel quality, even in small percentage quantities. In this study, possibility of removal of copper from ferrous scrap by using $Cl_2$ gas is experimentally examined in a small size experimental apparatus. Synthetic ferrous scraps containing copper were reacted with $Cl_2$ gas in various atmosphere. The copper was chloridized and evaporated, whereas iron was oxidized and was not reacted with Cl2 and oxygen mixture gas.

Ceramics Body Development Using Waste Whiteware (백자 파도자기를 활용한 도자기 소지 개발)

  • Lee, Jea-Il;Lee, Yong-Seok;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.10 s.293
    • /
    • pp.626-634
    • /
    • 2006
  • Ceramics manufacturers in the nation produced more than 5000 tons of ceramics wastes a year increasing industrial waste quantity: However, almost no researches were made to reduce environmental pollution and to recycle waste ware. In this study, white ware scraps that were produced at Icheon, Gyeonggi-do were recycled to make use of them as raw materials of ceramics body and to develop new ceramics body that had economic advantages and good quality. The findings showed that the addition of waste ware had limit of 20 wt% considering molding. The addition of waste ware of 20 wt% to white ware lowered baking temperature of the white ware that was added by waste ware of 20 wt% by 30$^{\circ}C$ than existing white ware, and property values were good, for instance, porosity of 3% in average and water absorptivity of 2% in average, and the bending strength recorded more than 800 kgf/$cm^2$ to be high than that of existing white ware being sold in market. The waste ware could be used to produce new ware body and to recycle resources and to solve environmental problems caused by burial and to improve property of ceramics and to save transportation costs as well as baking costs.

Fabrication of LiNiO2 using NiSO4 Recovered from NCM (Li[Ni,Co,Mn]O2) Secondary Battery Scraps and Its Electrochemical Properties (NCM(Li[Ni,Co,Mn]O2)계 폐 리튬이차전지로부터 NiSO4의 회수와 이를 이용한 LiNiO2 제조 및 전기화학적 특성)

  • Kwag, Yong-Gyu;Kim, Mi-So;Kim, Yoo-Young;Choi, Im-Sic;Park, Dong-Kyu;Ahn, In-Sup;Cho, Kwon-Koo
    • Journal of Powder Materials
    • /
    • v.21 no.4
    • /
    • pp.286-293
    • /
    • 2014
  • The electrochemical properties of cells assembled with the $LiNiO_2$ (LNO) recycled from cathode materials of waste lithium secondary batteries ($Li[Ni,Co,Mn]O_2$), were evaluated in this study. The leaching, neutralization and solvent extraction process were applied to produce high-purity $NiSO_4$ solution from waste lithium secondary batteries. High-purity NiO powder was then fabricated by the heat-treatment and mixing of the $NiSO_4$ solution and $H_2C_2O_4$. Finally, $LiNiO_2$ as a cathode material for lithium ion secondary batteries was synthesized by heat treatment and mixing of the NiO and $Li_2CO_3$ powders. We assembled the cells using the $LiNiO_2$ powders and evaluated the electrochemical properties. Subsequently, we evaluated the recycling possibility of the cathode materials for waste lithium secondary battery using the processes applied in this work.

Effect of Carbon Materials on the Slag Foaming in EAF Process (전기로 슬래그 포밍에 미치는 가탄재 종류의 영향)

  • Kim, Young-Hwan;Yoo, Jung-Min;Um, Hyung-Sic
    • Resources Recycling
    • /
    • v.28 no.2
    • /
    • pp.40-45
    • /
    • 2019
  • During steelmaking in EAF, recycled scraps is used as a main material, melted by arc, and electricity use as a main energy. Slag foaming is an important technology for reducing electrical energy. CO gas generated by the reaction between injection carbon and (FeO), [C] and injection {$O_2$}. CO gas generated by this reaction is collected in slag, resulted in slag foaming. In general, the carbon materials used in the EAF process is anthracite and coke. This study investigated the effects of the carbon materials used on slag foaming in the steelmaking process. As a result of this study, the slag foaming height is increased by cokes rather than anthracite, and with an increase in the amount of particles samller than $500{\mu}m$. Based on these results, the application to the operation resulted in increase of slag forming height, reduction of injection carbon, and reduction of electrical energy.

Localization development of environmentally-friendly high-functional outsole material using leather scrap (피혁폐기물을 활용한 친환경 고기능성 아웃솔 소재의 국산화 개발방안)

  • Sang, Jeong Seon;Park, Myung-Ja
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.23 no.2
    • /
    • pp.165-176
    • /
    • 2021
  • To solve environmental problems, research and efforts are required to reduce leather waste that is generated in large quantities during the leather manufacturing process. Leatherboard is a plate-like material that is made by crushing leather waste, such as trimming or shaving scraps and mixing fibers, pulp, rubber, and adhesives. The aim of this study is to provide basic data on the localization of leatherboard manufacturing technology for outsoles, which are increasingly in demand due to their excellent performance and price competitiveness. Interviews with experts and related organizations were conducted to investigate the related global technology trends. Also, the performance of three products that can be used as reference materials were evaluated and compared. As part of the research and efforts to reduce the amount of leather waste generated, high-performance materials using leather waste were developed and commercialized by major western companies. In Korea, various efforts have been made since 2000, and some companies have produced leatherboard for interior uses. However, the amount of waste recycled relative to that generated is not large due to the limited demand. Natural leather soles perform better than leatherboard soles in all evaluation aspects. In the case of leatherboard, performance varied by manufacturer. German products showed flexibility resistance and dimensional stability, thereby meeting performance requirements. However, abrasion resistance and cleavage resistance were slightly below the required performance standards, and research and development is needed to improve performance in those areas. Currently, it is impossible to evaluate the performance of domestic products due to underdevelopment. However, if the development of process technology continues based on the performance evaluation results of the best leatherboard in the shoe industry, materials for outsoles will be able to be produced domestically with prices competitiveness while realizing natural leather materials performance to some extent.

Recycling Industry of Urban Mines by Applying Non-Ferrous Metallurgical Processes in Japan (비철제련(非鐵製鍊) 프로세스를 이용한 일본(日本)의 도시광산(都市鑛山) 재자원화산업(再資源化産業))

  • Oh, Jae-Hyun;Kim, Joon-Soo;Moon, Suk-Min;Min, Ji-Won
    • Resources Recycling
    • /
    • v.20 no.3
    • /
    • pp.12-27
    • /
    • 2011
  • DOWA group has been working on metal recycling applying the smelting and refining process of KOSAKA Smelter. DOWA has developed it's metal recycling technologies through the treatment of black ore(complex sulfide ores) that contain many kinds of non-ferrous metals. In addition to these special technologies, DOWA has strengthened its hydrometallurgical process of precious metals and ability to deal with low-grade materials such as used electrical appliances or vehicles. On the other hand, JX Nippon Mining & Metals Corporation(JX-NMMC) carries out its metal recycling and industrial waste treatment businesses employing advanced separation, extraction and refining technologies developed through its extensive experience in the smelting of non-ferrous metals. JX-NMMC collects approximately 100,000t/y of copper and precious metal scraps from waste sources such as electronic parts, mobile phones, catalytic converters, print circuit boards and gold plated parts. These items are recycled through the smelting and refining operations of Saganoseki smelter and Hitachi Metal-recycling complex(HMC). In this like, metal recycling industries combined with environmental business service in Japan have been developed through excellent technologies for mineral processing and non-ferrous smelting. Also, both group, Dowa and JX-NMMC, were contributed to establish Japan's recycling-oriented society as the typical leading company of non-ferrous smelting. Now. it is an important issue to set up the collection system for e-waste.

State and Prospects of Organic Waste Composting in Korea (유기성 폐기물의 자원화 가능성 및 퇴비 이용 전망 평가)

  • Shin, Hang-Sik;Hwang, Eung-Ju
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.6 no.2
    • /
    • pp.7-30
    • /
    • 1998
  • Generation and recycling potential of organic waste in Korea were estimated. Status of organic waste composting and compost utilization also were surveyed to promote the recycling of organic waste. From 1994 to 1997, generation of garbage decreased gradually while recycling rate increased due to positive governmental strategy. During the same period, livestock waste increased 11.2%. Municipal wastewater sludge was generated 3,500 ton/day which was 0.03% of wastewater treated in 1996. The energy Potential of industrial organic waste was estimated to 288 million TOE which was 1.75% of the nationwide first energy consumption in 1996. Recycling of industrial sludge was low to 31%, while recycling of animal waste, plant scraps, and wasted paper were relatively high over 50%. Industrial sludge should be recycled more as it was the most part of industrial organic waste. Conventional composting materials were mainly livestock waste, food processing waste, fishery waste, sawdust, and nightsoil. Garbage and sludge have been composted recently. 420,000 tons of compost in 1996 were produced by 288 makers, the most of which were utilized in agriculture. It was suggested that separated collection, compost standard, and quality management should be provided to promote the composting of organic waste.

  • PDF

A Study on Recovery of Aluminum Oxide from Artificial Marble Waste by Pyrolysis (열분해에 의한 폐인조대리석으로부터 산화알루미늄 회수에 관한 연구)

  • Kim, Bok Roen;Kim, Chang Woo;Seo, Yang Gon;Lee, Young Soon
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.567-573
    • /
    • 2012
  • Compared with the natural marble, the artificial marble has the advantages of excellent appearance, high degree of finish, even color, fine pressure and wear resistance, bear erosion and weathering, etc. It can be widely used in kitchen countertops, bath vanity tops, table tops, furniture, reception desks, etc. However, large amounts of artificial marble waste such as scraps or dust have been generated from sawing and polishing processes in artificial marble industry. Waste from artificial marble industry is increasing according to demand magnification of luxurious interior material. Artificial marble wastes can be recycled as aluminum oxide used as raw materials in electronic materials, ceramics production, etc., and methyl methacrylate(MMA) which become a raw material of artificial marble by pulverization, pyrolysis and distillation processes. The characteristics of artificial marble wastes was analyzed by using TGA/DSC and element analysis. Crude aluminum oxide was obtained from artificial marble waste by pulverization and thermal decomposition under nitrogen atmosphere. In this work, Box-Behnken design was used to optimize the pyrolysis process. The characteristics of crude aluminum oxide was evaluated by chromaticity analysis, element analysis, and surface area.

Triboelectrostatic Recovery of High Zinc-Containing Particulate contents from Steel-Making Process Dust (전기로 제강분진 중 고아연함량입자 성분의 마찰대전분리 회수)

  • Chang Hyun-Joo;Kim Dong-Su;Kim Hang-Goo;Cho Min-Yaung;Namkung Won
    • Resources Recycling
    • /
    • v.13 no.2
    • /
    • pp.39-46
    • /
    • 2004
  • The amount of electric furnace dust has been steadily increasing due to the increase of iron scraps which are usually recycled by electric furnace melting process. To date, this electric furnace dust has usually been treated by landfilling, however, because of shortage of landfill sites and heavy metal leaching more desirable treatment schemes are urgently needed. Among several possible schemes for the proper treatment of electric furnace dust, its recycling can be said to be most desirable. In present study, the triboelectrostatic separation of zinc and zinc-containing components from electric furnace dust was attempted based on its physicochemical properties such as particle shape, size distribution, and chemical assay. The dust was found to be mixed with spherical and non-spherical shaped particles and its major component materials were $ZnFe_2$$O_4$, ZnO, Fe, Zn, and FeO. The content of zinc-containing components in the entire dust was observed to be in the range of 15~30 wt%, which reasonably justified that zinc is recyclable. The triboelectrostatic characteristic of each component material was found to be different each other since their work functions were different, and based on this characteristic zinc and zinc-containing component could be flirty separated from the dust. After selecting a proper tribo-elec-trification material, the separation features of zinc and zinc-containing component were examined by taking the distance of electrodes, electric field strength, and scavenging as the experimental variables. The highest zinc-content obtained under the optimal separating condition was found to be up to 50wt%.

Trend on the Recycling Technologies for Waste Magnesium by the Patent and Paper Analysis (특허(特許)와 논문(論文)으로 본 폐(廢)마그네슘 재활용(再活用) 기술(技術) 동향(動向))

  • Moon, Byoung-Gi;You, Bong-Sun;Cho, Young-Ju;Cho, Bong-Gyoo
    • Resources Recycling
    • /
    • v.22 no.3
    • /
    • pp.73-80
    • /
    • 2013
  • Metal prices are rapidly rising due to increasing demand of metals and limited available resources according to the industrial requirement. As a result, securing a stable supply of these metal resources has been recognized as a core element of national competitiveness and sustained economic growth. In the case of magnesium and its alloys which are entirely depending on import, low-grade magnesium scraps from end-of-life vehicles and 3C(Camera, Computer, Communication) parts and magnesium wastes such as sludge and dross generated during melting process are hardly recycled. Accordingly, the development and commercialization of recycling technology of low-grade magnesium scrap is desperately needed to improve efficiency of resource circulation and to establish the required proprietary of resource metal supply and demand. In this study, papers and patents on recycling technologies of waste magnesium were analyzed. The range of search was limited in the open patents of USA (US), European Union (EP), Japan (JP), Korea (KR) and SCI journals from 1974 to 2012. Patents and journals were collected using key-words searching and filtered by filtering criteria. The trends of the patents and journals was analyzed by the years, countries, companies, and technologies.