• Title/Summary/Keyword: recycled plastic fiber

Search Result 28, Processing Time 0.021 seconds

Effects of PE (Polyethylene) and GF (Glass Fiber) Addition on Tensile Strength and Elongation of ABS (Acrylonitrile Butadiene Styrene) Recovered from Waste LCDs (폐(廢)LCD에서 회수(回收)된 ABS(Acrylonitrile Butadiene Styrene)의 인장강도(引張强度)와 연신율(延伸率)에 미치는 PE(Polyethylene)와 유리섬유(纖維)(Glass Fiber) 첨가효과(添加效果))

  • Lee, Sungkyu;Cho, Sung-Su;Lee, Soo-Young;Park, Jae Layng;Hong, Myung Hwan;Hong, Hyun Seon
    • Resources Recycling
    • /
    • v.22 no.3
    • /
    • pp.50-56
    • /
    • 2013
  • Recycled plastic composites of ABS/PE (50/50 and 20/80) and ABS/GF (90/10) were fabricated from plastic components of waste LCDs and effects of PE composition on elongation of ABS/PE composites were investigated. Increased PE contents improved elongation of the composite from 2.4% to 13%, which was attributed to increased crystalline behavior of the ABS/PE composite afforded by ductile PE fraction: SEM fractographs showed some sign of plastic deformation of PE matrix before ductile fracture of the composites.

Electrochemical Characteristics of CFX Based Lithium Primary Batteries Produced by Carbon Fiber Reinforced Plastic -Derived Waste Carbon Fibers (탄소섬유강화플라스틱 유래 폐 탄소섬유로 제조된 불화탄소 기반 리튬일차전지의 전기화학적 특성)

  • Naeun Ha;Chaehun Lim;Seongmin Ha;Seongjae Myeong;Young-Seak Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.515-521
    • /
    • 2023
  • In this study, waste carbon fiber obtained by pyrolysis of carbon fiber reinforced plastic (CFRP) was used to produce carbon fluoride through vapor phase fluorination and recycled as a reducing electrode material for lithium primary batteries. First, the physicochemical properties of the waste carbon fiber obtained by pyrolysis were determined, and the structural and chemical properties of carbon fluoride were analyzed to evaluate the effect of vapor phase fluorination on the waste carbon fiber. XRD analysis confirmed that the hexagonal network carbon laminated structure (002 peak) of the waste carbon fiber was gradually converted into a carbon fluoride structure (CFX, 001 peak) as the temperature of gas phase fluorination increased. The discharge capacity of the lithium primary battery produced using this carbon fluoride was up to 862 mAh/g. This was compared to the discharge capacity of carbon fluoride-based Li-ion batteries made of other carbon materials. These results suggest that carbon fluoride made from waste CFRP-based carbon fibers can be used as a reducing electrode material for Li-ion batteries.

A Study on the Promotion of Combustible Construction Waste Recycling (가연성 건설폐기물의 자원화 제고를 위한 방안)

  • Park, Ji-Sun;Lee, Sea-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.89-95
    • /
    • 2009
  • The current enforce decree of "The Act on the Promotion of Construction Waste Recycling" divides seventeen kinds of construction wastes by property and configuration. Mixed construction waste, one of them classified by the enforce decree, is composed two more than justified construction wastes except refuse soil and rock. In construction wastes justified by enforce decree of this law, most refuse concrete and asphalt concrete of construction wastes are recycled. As well as refuse metal is separated, sorted from bulk them, and merchandised for value. Finally this is used the secondary manufactured products. Even though combustible construction wastes like refuse wood, plastics, fiber can be recycled RDF(Refuse derived fuel) or RPF(Refuse plastic fuel) because of high caloric value and low heavy metal but most of them are discharged as mixed construction waste and then treated by treated by incineration and landfill. Therefore, to control construction waste flow efficiently, construction wastes are classifies first combustible, incombustible, mixed combustible, incombustible and etc. in this study. The combustible waste is consisted refuse wood, plastics, fiber and etc. and incombustible waste contains refuse concrete, asphalt, and etc. Mixed construction is construction waste that can not separate from mixed waste bulk with different kinds.

  • PDF

Physical and mechanical properties of cement mortar with LLDPE powder and PET fiber wastes

  • Benimam, Samir;Bentchikou, Mohamed;Debieb, Farid;Kenai, Said;Guendouz, Mohamed
    • Advances in concrete construction
    • /
    • v.12 no.6
    • /
    • pp.461-467
    • /
    • 2021
  • Polyethylene-terephthalate (PET) from bottle waste and linear low-density polyethylene (LLDPE) from barrels and tanks waste are widely available and need to be recycled. Recycling them in concrete and mortar is an alternative solution for their disposal. In this study various quantities of sand (5%, 10%, 15% and 20%) were substituted by powder from LLDPE waste. In addition, PET waste fibers (corrugated, straight) were added to the mortar with different percentages (0.5%, 1%, 1.5% and 2%) of cement mass. This paper evaluate the mechanical and physical properties of the composites in fresh (workability, air content and density) and hardened state (compressive and flexural strength, water absorption and total shrinkage). From the experimental results, it can be concluded that the strengthening in tensile of the mortar with plastic waste corrugated fibers is improved. Other important results are that the water absorption and the density rate are less than that of the ordinary mortar.

Bond Strength Properties of CFRP Rebar in Concrete According to the Concrete Strength (콘크리트 강도에 따른 CFRP 보강근의 부착강도 특성)

  • Kim, Ho-Jin;Kim, Ju-Sung;Kim, Young-Jin;Choi, Jung-Wook;Park, Sun-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.569-577
    • /
    • 2021
  • CFRP(Carbon Fiber Reinforced Plastic) can maintain the same strength even if the diameter is reduced by about one - third, and the weight is about one - twentieth of that of the deformed reinforcing bars that have been used in the construction industry. In particular, it is resistant to corrosion, which is the weakest part of reinf orcing bars, and there is no concern that it will deteriorate over time, It is light and durable, so transportation costs are low and it is convenient for high-rise buildings. This paper experimentally clarifies the adhesive properties of CFRP and clarifies its behavior. That is, bond strength test was conducted with the directness of CFRP and the strength of concrete as experimental variables, and the bond mechanism was clarified experimentally. Furthermore, based on the experimental results, we constructed the bond stress-slip-strain relationship of CFRP compared to the existing deformed reinforcing bars.

A Study of Modular Dome Structural Modeling with Highly Filled Extrusion Wood-Plastic Composite Member (고충진 압출성형 합성목재를 이용한 모듈러 돔의 구조모델링에 관한 연구)

  • Shon, Su-Deok;Kwak, Eui-Shin;Lee, Seung-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.76-83
    • /
    • 2015
  • This paper aims at developing an environmentally friendly modular dome structure system with highly filled extrusion wood-plastic composite (WPC) member, and manufacturing a real-size specimen by modularizing members and nodes. The member used in the model is the WPC member with 70% wooden fiber contests, which is higher then previous WPC one. Its members and nodes are modularized by analyzing geometric characteristics of icosahedral-based geodetic dome. Applicapability of the 6ea prototype nodes and 3ea prototype members to the modular dome is examined with the results of the modulaization and the making process for the real-size specimen. Besides, from the analysis results, the lowest buckling mode is expected to be a nodal buckling on a node near the boundary.

Strength toss of F-Fiber Obtained from Recycling FRP Ship in a Basic Solution (폐 FRP 선박에서 분리하여 얻은 F섬유의 염기성 용액에서의 강도저하)

  • Lee, Seung-Hee;Kim, Yong-Seop;Yoon, Koo-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.1
    • /
    • pp.42-45
    • /
    • 2008
  • It has been reported that FRP (fiber reinforced plastic) can be recycled by separating into layers instead of crushing into powder. F-fiber obtained from roving layer separated from FRP, has bigger tensile strength than the bundle of glass fibers of which FRP was made (more than 90%). SEM image of F-fiber shows the presence of some resin. Under the proposition of usage of F-fiber in the concrete material, tensile strength is examined after soaking in a basic solution (NaOH+KOH). The reaction mechanism of strength loss may be considered as an attack of hydroxide ion ($OH^-$) on a chemical bond of Si-O-Si of glass fiber. The simulation graph of the strength loss data implies certain reaction mechanism. While in the early stage kinetically controlled reaction results in a fast drop of tensile strength, after 30 days dispersion rate of hydroxide ion plays a major role in strength loss. This result is similar to the one for the AR glass. An extrapolation of the graph would make an assumption about the lift time of F-fiber possible.

  • PDF

Study of Structural Design of Polyethylene Pleasure Boat (폴리에틸렌 플레저 보트의 구조설계에 관한 연구)

  • Cho, Seok Swoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1551-1561
    • /
    • 2012
  • Boat or yacht hulls are mainly built using FRP composite materials. FRP boat hull manufacturing has been restricted since 2000 under international regulations on ocean environment safety. FRP composite materials cannot be recycled and require more than 100 years to biodegrade. Therefore, alternatives to FRP have been proposed by many boat builders. Steel, aluminum, and FRP are commonly used as boat hull materials. Their design specifications are proposed as Korean register of shipping. However, the design specifications for inexpensive materials for a small boat have not yet been studied. Small shipbuilders manufacture and sell HDPE canoes or HDPE kayaks. In this study, a hull form was designed based on actual boats. The thickness of an HDPE boat hull was determined based on ISO 12215-5 structural design specifications.