• Title/Summary/Keyword: recycled material

Search Result 762, Processing Time 0.03 seconds

Analysis of Utilizing Recycled Cement Containing Calcium Phosphate as a Solidifying Material for Radioactive Waste Disposal (인산칼슘이 함유된 재생시멘트의 방사성 폐기물 고화재 활용성 검토)

  • Gong, Dong-Geon;Kim, Ji-Hyun;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.191-192
    • /
    • 2021
  • For the stable management of radioactive waste, it is necessary to secure a solidification treatment technology capable of immobilizing hazardous radioactive elements in a solid matrix. In this study, the feasibility of using recycled cement recovered from waste concrete as a solidifying material for radioactive waste was analyzed.

  • PDF

Development of Non-cement Material using Recycled Resources (유동층연소방식 석탄재를 활용한 무시멘트 결합재)

  • Mun, Kyoung-Ju;Lee, Min-Hi;Yoon, Seong-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.156-157
    • /
    • 2014
  • Inorganic binding material was made by recycled resource and its applicability as pile-filling material was examined. The result was that the material had same liquidity with the liquidity of OPC and high reactivity with site soil. According to dynamic/static loading tests by site test-construction, the inorganic binding material met both design bearing capacity and settlement. Since the inorganic binding material showed same or better performance than OPC, the utilization possibility of the inorganic binding material made of recycled resource as pile-filling material was verified.

  • PDF

Performance evaluation of cement-zero ECO pile-filling material utilizing recycled resource (순환자원을 활용한 Cement Zero형 ECO 파일채움재의 성능평가)

  • Song, Sang Hwon;Yoon, Seong Jin;Lee, Young Won;Eum, Hyun Mi;Mun, Kyoung Ju;Ko, Hyoung Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.8-10
    • /
    • 2013
  • Inorganic binding material was made by recycled resource and its applicability as pile-filling material was examined. The result was that the material had same liquidity with the liquidity of OPC and high reactivity with site soil. According to dynamic/static loading tests by site test-construction, the inorganic binding material met both design bearing capacity and settlement. Since the inorganic binding material showed same or better performance than OPC, the utilization possibility of the inorganic binding material made of recycled resource as pile-filling material was verified.

  • PDF

Characteristics of Materials Recycling Product Using CPW from Households According to the Amount of r-LDPE (r-LDPE 혼입율에 따른 생활계 복합 폐플라스틱 물질재활용 제품 특성)

  • Kang, Suk-Pyo;Kang, Hye-Ju;Kim, Sang-Jin;Shin, Sung-Chul;Lee, Min-Hi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.425-432
    • /
    • 2021
  • In this paper, We produced supporting for ginseng cultivation facilities as a material recycling product of CPW(Complex Plastic Wastes, CPW) from households. And we analyzed the characteristics of material recycling products according to the amount of r-LDPE(Recycled low density polyethylene, r-LDPE) used. As a result, as the amount of recycled LDPE used increa sed, the tensile strength a nd elonga tion of ma teria l recycled products using CPW increa sed, but a sh decrea sed. When the recycled r-LDPE usage is 5% or more, the physical properties of the material recycling product using CPW stably satisfy the quality standard (GRM 3093-2021) of supporting for ginseng cultivation facilities.

Analysis of Recycled Raw Materials and Evaluation of Characteristics by Mixing Ratio for Recycling of Waste Vinyl (폐비닐 재활용을 위한 재생원료 분석 및 배합비율에 따른 특성 평가)

  • Ahn, Nak-Kyoon;Lee, Chan gi;Kim, Jung-Hwan;Park, Pil Hwan;Kim, Seung-Hwan;Yoon, Jin-Ho
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.53-59
    • /
    • 2021
  • Waste vinyl generated from household waste has been used as a solid refuse fuel (SRF) due to the presence of impurities such as soil, metal, and glass; however, the amount of SRF used has been decreasing owing to recent environmental problems, thereby necessitating the need for recycling. In this study, the mixed recycled raw material produced from household waste vinyl and polyethylene (PE) single recycled raw material produced from agricultural waste vinyl were examined. Raw material analysis revealed that waste vinyl was mainly composed of polyethylene, and approximately 2% of ash remained in the mixed recycled raw material, whereas no ash was found in the PE single recycled raw material. In addition, the analysis of tensile strength according to the mixing ratio of the two recycled raw materials revealed that the highest tensile strength was approximately 16 MPa under the heat treatment temperature of 200 ℃, compression pressure of 30 MPa, and a mixing ratio of 3:7 (mixed:PE single). In addition, the highest bending strength was approximately 39 MPa under the heat treatment temperature of 200 ℃, compression pressure of 30 MPa, and a mixing ratio of 3:7 (mixed:PE single). Therefore, the possibility of recycling waste vinyl was suggested by investigating the change in strength characteristics according to the mixing ratio of the recycled raw materials.

Analysis of Strength Characteristics for Lightweight Soils Using Recycled Material (폐기물을 첨가한 경량혼합토의 강도특성 분석)

  • Bae, Yoon-Shin
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.3
    • /
    • pp.204-212
    • /
    • 2012
  • Lightweight soils are very economical and environment friendly materials that are valuable in field without wasting construction materials, dredged soils and clay/ silty soils during construction. Recently, the research of lightweight soils mixed with recycled material (recycled tire powder, rice husks) have been investigated. In this study the mix design factors (i.e., weight of soil, water content, foaming agent and added water) were analyzed and optimized mix design was suggested using cement content for revealing strength. For the analysis the stress-strain behavior, strength with respect to time, and experimental strength for the component of recycled material were analyzed. Finally, target strength was determined to calculate reasonable and economical mix ratio and the optimized cement content was suggested.

Punching shear behavior of recycled aggregate concrete

  • Dan, Saikat;Chaudhary, Manpreet;Barai, Sudhirkumar V.
    • Computers and Concrete
    • /
    • v.21 no.3
    • /
    • pp.321-333
    • /
    • 2018
  • Flat-slabs, being a significant structural component, not only reduce the dead load of the structure but also reduce the amount of concrete required for construction. Moreover the use of recycled aggregates lowers the impact of large scale construction to nearby ecosystems. Recycled aggregate based concrete being a quasi-brittle material shows enormous cracking during failure. Crack growth in flat-slabs is mostly in sliding mode (Mode II). Therefore sufficient sections need to be provided for resistance against such failure modes. The main objective of the paper is to numerically determine the ultimate load carrying capacity of two self-similar flat-slab specimens and validate the results experimentally for the natural aggregate as well as recycled aggregate based concrete. Punching shear experiments are carried out on circular flat-slab specimen on a rigid circular knife-edge support built out of both normal (NAC) and recycled aggregate concrete (RAC, with full replacement). Uniaxial compression and bending tests have been conducted on cubes, cylinders and prisms using both types of concrete (NAC and RAC) for its material characterization and use in the numerical scheme. The numerical simulations have been conducted in ABAQUS (a known finite element software package). Eight noded solid elements have been used to model the flat slab and material properties have been considered from experimental tests. The inbuilt Concrete Damaged Plasticity model of ABAQUS has been used to monitor crack propagation in the specimen during numerical simulations.

Thermal Resistivity Measurement of Recycled Aggregates and Comparison with Conventional Prediction Model (송배전관로 되메움용 순환골재의 열저항 측정 및 기존 열저항 예측 모델과의 비교)

  • Wi, Jihae;Hong, Sungyun;Choi, Hangseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.199.1-199.1
    • /
    • 2010
  • Use of recycled aggregates that are constituents of concrete or asphalt-based structures has become popular because the recycling is an eco-friendly way to overcome the depletion of natural aggregates. In order to adopt the recycled aggregates for backfilling a power transmission pipeline trench, their thermal resistivity should be low enough to prevent thermal runaway in the transmission system. In this study, a series of laboratory tests with QTM-500 and KD2 Pro was performed to measure the thermal resistivity of recycled aggregates prepared from various sources. Relationships between the thermal resistivity of recycled aggregates and the water content have been obtained with consideration of compaction effort. Similar to natural soils, the thermal resistivity of the recycled aggregates decreases with increasing the water content. In addition, this study compared the experimental data with conventional prediction models for the thermal resistivity in the literature, which suggests the availability of the recycled aggregates as backfill material substituting for natural aggregates when backfilling the power transmission pipeline trench.

  • PDF

Carbonation Properties of Recycled Cement Mortar made of Cementitious Powder from Concrete Waste (폐콘크리트 미분말을 이용한 재생시멘트 모르터의 중성화 특성)

  • Kim Jin-Yang;Park Cha-Won;Ahn Jae-Cheol;Kang Byeung-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.61-64
    • /
    • 2005
  • Recently, there have been many studies about recycling cementitious powder from concrete waste(hereinafter referred to as waste powder), generated after recycle aggregate production. Previous studies showed that when the heating process of waste powder at $700^{\circ}C,\;Ca(OH)_2$ in paste is dehydrated making possible the restoration of hydraulic properties. Recycled cement with hydraulic properties restored is thought to be re-hydrated through the mechanism of hydration, which is almost similar in Portland cement. This clearly suggests that the hydrate of recycled cement is alkali in type. Like in general concrete, if recycled cement is used as a structural material, resistance performance against carbonation or neutralization by $CaCO_3$ in air probably would be most influential to the life of steel-reinforced concrete structure. Thus the purpose of this study is to make an experimental review on chemical properties of recycled cement, manufactured with concrete waste as base material, and investigate the durability of concrete using recycled cement through evaluating the cement s performance of resistance to carbonation in accordance with its accelerating age. Based on its results, further, the study seeks to provide basic information about ways of utilizing recycled cement.

  • PDF

Carbonation Properties of Recycled Cement Mortar made of Cementitious Powder from Concrete Waste (폐콘크리트 미분말을 이용한 재생시멘트 모르터의 중성화 특성)

  • Park, Cha-Won;Ahn, Jae-Cheol;Kang, Byeung-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.6 no.4 s.22
    • /
    • pp.61-68
    • /
    • 2006
  • Recently, there have been many studies about recycling cementitious powder from concrete waste(hereinafter referred to as waste powder), generated after recycle aggregate production. Previous studies showed that when the heating process of waste powder at $700^{\circ}C,\;Ca(OH)_2$ in paste is dehydrated making possible the restoration of hydraulic properties. Recycled cement with hydraulic properties restored is thought to be re-hydrated through the mechanism of hydration, which is almost similar in Portland cement. This clearly suggests that the hydrate of recycled cement is alkali in type. Like in general concrete, if recycled cement is used as a structural material, resistance performance against carbonation or neutralization by $CaCO_3$ in air probably would be most influential to the life of steel-reinforced concrete structure. Thus the purpose of this study is to make an experimental review on chemical properties of recycled cement, manufactured with concrete waste as base material, and investigate the durability of concrete using recycled cement through evaluating the cement's performance of resistance to carbonation in accordance with its accelerating age. Based on its results, further, the study seeks to provide basic information about ways of utilizing recycled cement.