• Title/Summary/Keyword: recycled material

Search Result 762, Processing Time 0.023 seconds

The Brightness Change of Fractured Surface in Accordance with Inclusion Contents of Magnesium Alloy (마그네슘합금내 개재물 함유량에 따른 파단면의 명도변화)

  • Kim, Hyun Sik;Ye, Dea Hee;Kang, Min Cheol;Kim, Jung Dae;Jeong, Hae Yong
    • Journal of Korea Foundry Society
    • /
    • v.34 no.6
    • /
    • pp.200-213
    • /
    • 2014
  • Pure magnesium and magnesium alloys have been applied to various kinds of industrial fields, especially automotive and electronic parts. These parts are manufactured mainly through a diecasting process. These days, magnesium ingots are used as raw material, and recycled ingots are often used for commercial purposes. But the quality of virgin magnesium and recycled ingots is not secure. Therefore, massive casting defects can occur, and some things manufactured can be damaged by these defects. This study evaluated the inclusions of virgin magnesium and recycled ingot. It also included composition analysis by spectrometer, measuring inclusion contents by SEM & EDS, and performing a brightness test on fractured surfaces. The brightness test is generally very easy and obtains results quickly, so its results have been compared with the results obtained from various test methods. From the test results, we obtained a satisfactory result in evaluating inclusion and oxide. The brightness values are lower as the inclusion contents are higher. When the brightness value is over 47 in AM50A and 44 in AZ91D, the mechanical properties are expected to be good.

A Study on Early Age Shrinkage of Concrete using Recycled Aggregate (재생골재를 사용한 콘크리트의 초기재령 수축에 관한 연구)

  • Koo, Bong-Kuen;Seo, Sang-Gu;Rha, Jae-Woong;Park, Jae-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.2
    • /
    • pp.159-167
    • /
    • 2003
  • Cracks in reinforced concrete structures reduce overall durability by allowing the penetration of water and aggressive agents, thereby accelerating the deterioration of the reinforcing steel. Highway pavement and bridge decks are especially susceptible to this type of deterioration since these structures exhibit high rates of shrinkage and are frequently exposed to aggressive environmental conditions. The objectives of this investigation included the development of experimental procedures for assessing shrinkage cracking potential of recycled aggregate concrete, the evaluation of mix composition on shrinkage cracking potential, and the development of theoretical models to simulate early-age cracking behavior. Specifically, the influences of shrinkage-reducing admixture(SRA) and recycled aggregate concrete were investigated. The shrinkage-reducing admixture substantially reduces free shrinkage and restrains shrinkage cracking while providing similar mechanical properties. A fracture mechanics modeling approach was developed to predict the behavior of a variety of restrained concrete specimens. This modeling approach was used to successfully explain experimental results from a variety of mixture compositions. The model was used to demonstrate the influence of material and structural properties on the potential for cracking.

Strength Properties of Non-cement Matrix by Using Recycled Aggregates and Sludge from Ready-Mixed Concrete (레미콘의 슬러지 고형분과 회수골재를 사용한 무시멘트 경화체의 강도특성)

  • Ryu, Dong-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.477-482
    • /
    • 2016
  • This study investigates the expressions characteristics of compression strength depending on the condition of fresh concrete and cured concrete by producing Non-cement mortar and concrete only with solidified sludge in the dehydrated cake form, recycled concrete and premixed materials(BS, FA) in order to actively use remicon recycling water as resources, rather than as construction waste material. After treating wastewater of pH 12.5 or more with alkali activator and after promoting BS hydration reaction, the amount of BS inflow was found to be increased and compression strength was increased accordingly: these results coincide with the analysis results of TG-DTA and SEM.

Properties of Lightweight Foamed Concrete According to the Replacement Ratio of Waste Concrete Sludge and Variation of Foam Ratio (폐콘크리트슬러지 대체율과 기포혼입률 변화에 따른 경량기포콘크리트의 특성)

  • Lee, Jung-Goo;Kim, Jae-Won;Choi, Hun-Gug;Kang, Cheol;Lee, Do-Heun;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.53-56
    • /
    • 2007
  • Recently, waste concrete emission has been increased by acceleration of urban development and the rapid growth of redevelopment projects, so recycling of waste concrete is actively progressed, But the usage is limited to a lower value added such as the roadbed material etc. To produce the high quality recycled aggregate, breaking and washing process is added to the existing process and inevitably increases the occurrence of particle, because old mortal is included in the recycled aggregate. Therefore, this study purpose is analysis the properties of lightweight foamed concrete made by waste concrete sludge which is the by-product from produce the recycled aggregate. In result, possibility of manufacture of lightweight foamed concrete which gives equal performance compared with ALC was detect(scope of density : $0.5{\sim}0.6$, scope of compressive strength : $3.5{\sim}4.0MPa$). And scope of porosity is as follow ; total porosity : $27{\sim}30%$, open porosity : $1{\sim}5%$

  • PDF

Combustion and Mechanical Properties of Fire Retardant Treated Waste Paper-Waste Acrylic Raw Fiber Composite Board

  • Eom, Young Geun;Yang, Han-Seung;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.1-10
    • /
    • 2003
  • Shredded waste newspapers, waste acrylic raw fibers, and urea-formaldehyde (UF) adhesives, at 10% by weight on raw material, were used to produce recycled waste paper-waste acrylic raw fiber composite boards in laboratory scale experiments. The physical and mechanical properties of fire retardant treated recycled waste paper-waste acrylic raw fiber composite boards were examined to investigate the possibility of using the composites as internal finishing materials with specific gravities of 0.8 and 1.0, containing 5, 10, 20, and 30(wt.%) of waste acrylic raw fiber and 10, 15, 20, and 25(wt.%) of fire retardant (inorganic chemical, FR-7®) using the fabricating method used by commercial fiberboard manufacturers. The bending modulus of rupture increased as board density increased, decreased as waste acrylic raw fiber content increased, and also decreased as the fire retardant content increased. Mechanical properties were a little inferior to medium density fiberboard (MDF) or hardboard (HB), but significantly superior to gypsum board (GB) and insulation board (IB). The incombustibility of the fire retardant treated composite board increased on increasing the fire retardant content. The study shows that there is a possibility that composites made of recycled waste paper and waste acrylic raw fiber can be use as fire retardant internal finishing materials.

A Linear Programming-Based Algorithm for Raw Recycled Material Mixtures in the Aluminum Alloy Fabrication Process (알루미늄 합금 제조공정에서의 선형계획모델 기반 재활용 원재료 혼합 비율 결정 알고리즘)

  • Min-Ju Kang;Ji-Hoon Kim;Kyeong-Jin Song;Yu-Jin Byun;Jae-Gon Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.47 no.2
    • /
    • pp.40-47
    • /
    • 2024
  • As environmental concerns escalate, the increase in recycling of aluminum scrap is notable within the aluminum alloy production sector. Precise control of essential components such as Al, Cu, and Si is crucial in aluminum alloy production. However, recycled metal products comprise various metal components, leading to inherent uncertainty in component concentrations. Thus, meticulous determination of input quantities of recycled metal products is necessary to adjust the composition ratio of components. This study proposes a stable input determination heuristic algorithm considering the uncertainty arising from utilizing recycled metal products. The objective is to minimize total costs while satisfying the desired component ratio in aluminum manufacturing processes. The proposed algorithm is designed to handle increased complexity due to introduced uncertainty. Validation of the proposed heuristic algorithm's effectiveness is conducted by comparing its performance with an algorithm mimicking the input determination method used in the field. The proposed heuristic algorithm demonstrates superior results compared to the field-mimicking algorithm and is anticipated to serve as a useful tool for decision-making in realistic scenarios.

Image and Phase Analysis of Low Carbon Type Recycled Cement Using Waste Concrete Powder (폐콘크리트 미분말을 사용한 저탄소형 시멘트의 조직 및 상분석)

  • Song, Hun;Shin, Hyeon-Uk;Lee, Jong-Kyu;Chu, Yong-Sik;Park, Dong-Chan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.4
    • /
    • pp.314-320
    • /
    • 2014
  • Although the cement industry serves as the cornerstone of the construction industry by supplying one of its fundamental materials, it confronts new environmental challenges due to the problem of the $CO_2$ generated from raw materials and fuel used in the cement manufacturing process. Also, concrete structures can be decomposed and reused as construction materials. Simply in terms of the cyclic processing of $CO_2$, recycling waste concrete to manufacture recycled aggregate or recycling waste concrete powder, which is the material for cement can be considered optimally environment-friendly practices. This study contributes to the aim of manufacturing high value added materials that exploits the chemical properties of the waste concrete powder. From the research results, waste concrete powder is feasible to use to produce low carbon type recycled cement.

A study on Consumer Awareness and Preference on the Coordination Using Recycled Material in Dining Space (재활용(Re-cycling) 소재를 이용한 식공간 연출에 대한 소비자의 인식 및 선호도 연구)

  • Hong, Ju-Young
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.9
    • /
    • pp.503-512
    • /
    • 2014
  • The study is based on the serious environmental problems occurring these days to acknowledge the consumers awareness and preference according with the coordination using recycled materials in the dining space. As the result, considered the consumers had lack in recognition of using recycled materials when they tried to use them in their normal daily life. Also the females were far more interested than the males with the usage of the recycled materials inside the restaurant and its interior image along with married persons had more positive attitude towards it than the unmarried ones. With education back ground, highly educated peoples really quite didn't prefer the usage of the recycled materials. According with the income, the high earnings and with the occupation, the professionals with specialized jobs considered the practical use of aspects more important than above. Therefore the needs to educate and promote the consumers to use recycled materials in their every day lives, it is required to build social responsibility and finding the essential meanings to save resources so that they can utilize them with converted recognitions.

A review on pavement porous concrete using recycled waste materials

  • Toghroli, Ali;Shariati, Mahdi;Sajedi, Fathollah;Ibrahim, Zainah;Koting, Suhana;Mohamad, Edy Tonnizam;Khorami, Majid
    • Smart Structures and Systems
    • /
    • v.22 no.4
    • /
    • pp.433-440
    • /
    • 2018
  • Pavements porous concrete is a noble structure design in the urban management development generally enabling water to be permeated within its structure. It has also capable in the same time to cater dynamic loading. During the technology development, the quality and quantity of waste materials have led to a waste disposal crisis. Using recycled materials (secondary) instead of virgin ones (primary) have reduced landfill pressure and extraction demanding. This study has reviewed the waste materials (Recycled crushed glass (RCG), Steel slag, Steel fiber, Tires, Plastics, Recycled asphalt) used in the pavement porous concretes and report their respective mechanical, durability and permeability functions. Waste material usage in the partial cement replacement will cause the concrete production cost to be reduced; also, the concretes' mechanical features have slightly affected to eliminate the disposal waste materials defects and to use cement in Portland cement (PC) production. While the cement has been replaced by different industrial wastes, the compressive strength, flexural strength, split tensile strength and different PC permeability mixes have depended on the waste materials' type applied in PC production.

A Study on the Mechanical Properties of Recycled Aggregate Concrete Mixed Steel Fiber (강섬유 혼입 순환골재 콘크리트의 역학적 특성에 관한 연구)

  • Shin, Yong-Seok;Cho, Cheol-Hee;Kim, Dae-Sung;Kim, Jeong-Sup
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.131-137
    • /
    • 2009
  • The rate of recycling of waste concrete, which represents the majority of construction-related waste, is increasing. However, a general recognition of the inferior qualify of recycled aggregates and their lower grade of compressive strength, bending strength, shear strength, frost resistance and ductility make the application of recycled aggregates to structures insufficient. Therefore, this study conducted material and member experiments by adding steel fiber for the purpose of improving the properties of recycled aggregate concrete. To synthesize the experimental results, it was found that specimens with a 30% steel fiber admixture had levels of compressive strength, tensile strength and frost resistance that were equivalent to or higher than the standard specimen, and that concrete that had a 30% replacement of recycled aggregates with steel fiber was suitable for application to actual structures.