• Title/Summary/Keyword: recycled material

Search Result 762, Processing Time 0.032 seconds

Experimental Study on Recycled-Aggregate Porous Concrete Pile Method (순환골재 다공질 콘크리트말뚝 공법에 대한 실내모형실험)

  • You, Seung-Kyong;Lee, Chang-Min;Kim, Se-Won;Choi, Hang-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.2
    • /
    • pp.23-29
    • /
    • 2008
  • The purpose of this research is to assess the application of recycled-aggregate that is gained from construction wastes as the material of compaction pile method. At the same time, the development of the new technique rectifies defects of the existing compaction pile method for soft ground improvement. In this research, laboratory chamber tests were carried out analyzing the effect of the soft ground improvement by porous concrete pile using recycled aggregate. Through the results of the laboratory chamber tests, the variations of settlement, excess pore pressure, and increment of the vertical stress with time and the behavior of the composite ground were elucidated.

  • PDF

CHARACTERISTICS AND STRENGTH EVALUATION OF THE MIXED MATERIAL OF FLY ASH FROM MUNICIPAL SOLID WASTE INCINERATOR AND THE RECYCLED POLYPROPYLENE

  • Park, Sang-Min;Kim, Hwan-Gi
    • Environmental Engineering Research
    • /
    • v.11 no.5
    • /
    • pp.257-265
    • /
    • 2006
  • The purpose of research is to mix the fly ash from municipal solid waste incinerator in the recycled Polypropylene and to recycle. The specimen was produced by mixing 20 wt.% of MSWI fly ash at maximum in the recycled Polypropylene and the particle size analyzer, DSC, TGA, SEM and UTM instruments were used to analyze the physical chemical properties of the specimen. As a result of measurement, the average particle size of MSWI fly ash was $18.08\;{\mu}m$. In TGA analysis, the temperature of specimen S-5 at 50% of weight decrease was risen by $7^{\circ}C$ higher than specimen S-1. In UTM measurement, specimen S-2 showed the maximum strength for tensile strength and specimen S-3 showed the maximum strength for flexural strength. But, impact strength was decreased according to the increasing proportion of MSWI fly ash. In conclusion, when the proper amount of MSWI fly ash was added to the recycled Polypropylene, thermal endurance, tensile strength and flexural strength could be increased, but impact strength was decreased.

Preparation of Cathode Materials for Lithium Rechargeable Batteries using Transition Metals Recycled from Li(Ni1-x-yCoxMny)O2 Secondary Battery Scraps (Li(Ni1-x-yCoxMny)O2계 이차전지 공정 스크랩으로부터 회수한 전이금속을 활용한 리튬이차전지 양극재 제조)

  • Lee, Jae-Won;Kim, Dae Weon;Jang, Seong Tae
    • Journal of Powder Materials
    • /
    • v.21 no.2
    • /
    • pp.131-136
    • /
    • 2014
  • Cathode materials and their precursors are prepared with transition metal solutions recycled from the the waste lithium-ion batteries containing NCM (nickel-cobalt-manganese) cathodes by a $H_2$ and C-reduction process. The recycled transition metal sulfate solutions are used in a co-precipitation process in a CSTR reactor to obtain the transition metal hydroxide. The NCM cathode materials (Ni:Mn:Co=5:3:2) are prepared from the transition metal hydroxide by calcining with lithium carbonate. X-ray diffraction and scanning electron microscopy analyses show that the cathode material has a layered structure and particle size of about 10 ${\mu}m$. The cathode materials also exhibited a capacity of about 160 mAh/g with a retention rate of 93~96% after 100 cycles.

Preparation of Polymer-modified Mortars with Recycled PET and Their Sound Absorption Characteristics (재활용 PET 를 이용한 고분자 몰타르의 제조 및 흡음 특성)

  • Hong, Byung-Pyo;Byun, Hong-Sik
    • Polymer(Korea)
    • /
    • v.34 no.5
    • /
    • pp.410-414
    • /
    • 2010
  • Two different types of polymer-modified mortars(PMM) were prepared with recycled PET and fly-ash. One is rigid PMM and the other is flexible PMM which are based on the composition of recycled PET. Their mechanical properties including friction coefficient measurement and damping characteristics such as sound absorption were investigated and compared with the commercial PMM such as epoxy PMM and PET PMM. The result from mechanical properties indicated that the rigid PMM could be competitive with the commercial PET PMM. The measurement of sound absorption coefficient showed that both rigid PMM and flexible PMM had much better damping capacity than commercial PMM. However, the friction coefficient of rigid PMM revealed that it would be suitable for the use as floor material.

Properties of recycled green building materials applied in lightweight aggregate concrete

  • Wang, Her-Yung;Hsiao, Darn-Horng;Wang, Shi-Yang
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.95-104
    • /
    • 2012
  • This study uses recycled green building materials based on a Taiwan-made recycled mineral admixture (including fly ash, slag, glass sand and rubber powder) as replacements for fine aggregates in concrete and tests the properties of the resulting mixtures. Fine aggregate contents of 5% and 10% were replaced by waste LCD glass sand and waste tire rubber powder, respectively. According to ACI concrete-mixture design, the above materials were mixed into lightweight aggregate concrete at a constant water-to-binder ratio (W/B = 0.4). Hardening (mechanical), non-destructive and durability tests were then performed at curing ages of 7, 28, 56 and 91 days and the engineering properties were studied. The results of these experiments showed that, although they vary with the type of recycling green building material added, the slumps of these admixtures meet design requirements. Lightweight aggregate yields better hardened properties than normal-weight concrete, indicating that green building materials can be successfully applied in lightweight aggregate concrete, enabling an increase in the use of green building materials, the improved utilization of waste resources, and environmental protection. In addition to representing an important part of a "sustainable cycle of development", green building materials represent a beneficial reutilization of waste resources.

Re-synthesis and Electrochemical Characteristics of LiFePO4 Cathode Materials Recycled from Scrap Electrodes

  • Kim, Hyung Sun;Shin, Eun Jung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.851-855
    • /
    • 2013
  • This paper describes an environmentally friendly process for the recovery of $LiFePO_4$ cathode materials from scrap electrodes by a simple thermal treatment method. The active materials were easily separated from the aluminum substrate foil and polymeric binders were also decomposed at different temperatures ($400^{\circ}C$, $500^{\circ}C$, $600^{\circ}C$) for 30 min under nitrogen gas flow. The samples were characterized by X-ray diffraction (XRD), scanning electronic microscopy (SEM), Raman spectroscopy, Thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The electrochemical properties of the recycled $LiFePO_4$ cathode were evaluated by galvanostatic charge and discharge modes. The specific charge/discharge capacities of the recycled $LiFePO_4$ cathode were similar to those of the original $LiFePO_4$ cathode. The $LiFePO_4$ cathode material recovered at $500^{\circ}C$ exhibits a somewhat higher capacity than those of other recovered materials at high current rates. The recycled $LiFePO_4$ cathode also showed a good cycling performance.

Compaction and Leaching Characteristics of the Light Weight Soil Used Recycled Styrofoam Beads and Disposal soils (폐 Styrofoam 혼합토의 다짐 및 용출 특성)

  • Shin, Bang-Woong;Lee, Bong-Jik;Lee, Jong-Kyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.2
    • /
    • pp.61-70
    • /
    • 2002
  • This paper presents the engineering property of light weight soil made of soil mixed with recycled Styrofoam and stabilizer. Recycled Styrofoam is widely used for lightweight fill material because it has important geotechnical characteristics which are light, adiabatic, and effective for vibration interception. It is very easy to get the disposal styrofoam. For this study, dynamic compaction test, static compaction test and pH and leaching tests were performed. Based on the test results, it is concluded that the static compaction method is recommened to prevent from crushing materials and pH values of embankment materials are satisfied with these of domestic and RCRA configuration.

  • PDF

An Experimental Study of the Recycled Cement Manufacturing Method for Improving the Material Quality (재생시멘트의 품질향상을 위한 제조방법에 관한 연구)

  • Oh, Sang-Gyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.2
    • /
    • pp.143-149
    • /
    • 2004
  • The recycle of domestic waste concrete is, however, still in an early stage, and it has been only partially being used for the road fillers. As a counter-plan of activating recycled concrete, we have confirmed the hydration possibility of the waste concrete powder from the experiment on recycling the aggregate powder since 2000. Though that study, we have known that the strength is increasing when the baking time is longer, and baking temperature maintain in $700^{\circ}C$. Also, the quality is lowered because of the fine aggregate powder which has a bad influence on flowability & compression strength by adhesion of mortar on the aggregate face. Therefore, mortar and interfacial separation of aggregate are large in proper quality for concrete recycling is expected that affect. The purpose of this study is to investigate effective aggregate separation and to determine the most suitable production method controlling the duration of baking time for recycled cement from the compressive strength, X-ray diffraction and ingredient analysis test.