• Title/Summary/Keyword: recycled

Search Result 3,419, Processing Time 0.027 seconds

Study on tensile performance change by recycled materials of TPO sheet applied to rooftop and artificial ground Rootproofings (옥상 및 인공지반 방근공사에 적용되는 TPO시트의 재생 소재 적용에 따른 인장성능 변화 연구)

  • Kim, Sun-Do;Kim, Jin-Sung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.103-104
    • /
    • 2018
  • Recently, in addition to greening of roof and artificial soil, Rootproofing to prevent damage to the waterproof layer and structures by roots is recognized as an important task. Therefore, various related products and construction methods have been developed and applied in the field. However, in the case of synthetic polymer-based sheets most commonly used in domestic construction sites, Most are produced using 100% new materials that are not suitable for green trends such as resource conservation and environmental protection. Therefore, in this study, we developed TPO sheet using recycled material, which is a technology that can secure eco-friendliness by utilizing recycled resources. As a result of the evaluation of tensile performance of the TPO sheet according to the recycled material content, The tensile strength of the specimens with the recycled content of 50 ~ 70% was the highest, The elongation rate of the specimen with the recycled content of 30 ~ 40% was the best.

  • PDF

Flexural Strain and Fracture Toughness of Recycled Concrete (재생콘크리트의 휨 변형과 파괴 특성)

  • 김광우;김주인;김기성
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.3_4
    • /
    • pp.90-98
    • /
    • 1995
  • The recycled concrete, average compressive strength of which was 2l0kg/cm$^2$ or higher with slump range of 14~18cm, was prepared by replacing 25% and 50% by weight of coarse aggregate with recycled aggregate from waste concrete. Mix design method for crushed aggregates was used and all specimens were cured by normal moisture curing method. A plasticiser and a fly ash were added to the mix to improve performance of recycled concrete. Flexural strength, stress- strain relationship and fracture toughness were evaluated by comparing with those of normal concretes. Recycled concrete showed, in general, lower flexural strength and fracture toughness, and higher strain under the same stress level. Fly ash in the concrete had an effect of reducing the strength and fracture toughness on both normal and recycled concretes. Since fly ash is known to improve many properties of concrete, while reducing strength properties, decision for using fly ash should be made carefully depending on the intended usage of the recycled concrete.

  • PDF

The prediction of Elastic Modulus of Recycled Aggregate Concrete (순환골재콘크리트의 탄성계수 추정에 관한 연구)

  • Sim, Jong-Sung;Park, Cheol-Woo;Park, Sung-Jae;Kim, Yong-Jae;Kim, Hyun-Joong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.105-108
    • /
    • 2005
  • This study investigated fundamental properties of the recycled aggregate which was produced through recent hi-techniques of recycling. In addition, the mechanical properties of the concrete that used the recycled aggregate were compared to the concrete used the natural aggregate. From the results of the mechanical property tests, as the recycled aggregate replacement ratio increased, the compressive strength and elastic modulus decreased. When the recycled aggregate completely replaced the natural aggregate, the compressive strength and elastic modulus was about 15$\%$ and 35$\%$ lower than the natural aggregate concrete, respectively. Based on the test results, equations for prediction of compressive strength and elastic modulus were suggested in the consideration of the amount of the replaced recycled aggregate. Based on the test results and study, the equation predicting the required development length of the recycled aggregate concrete is proposed.

  • PDF

Adsorption and Fluidity Properties of Recycled Cement Powder (재생미분말의 흡착특성과 유동특성)

  • Lee, Jong-Kyu;Chu, Yong-Sik;Jung, Suk-Jo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.846-851
    • /
    • 2006
  • This paper discuss the adsorption and fluidity properties of recycled cement powder with different hydration hysteresis and particle size. Reactivity of hydrated fine powder was negligible low. Therefore, the adsorption and fluidity properties with super-plasticizer for hydrated recycled cement powder was very important for using additive material. Adsorption amount of super-plasticizer was increased by the finer hydrated recycled cement powder addition. And the fluidity of hydrated recycled cement powder was very poor than un-hydrated cement powder. To Improve the fluidity of hydrated recycled cement powder, PC super-plasticizer is the more effective than NS super-plasticizer.

A Study on the application of the fine recycled concrete aggregate in the PHC piles (고품질 순환잔골재를 사용한 PHC파일의 적용 가능성 연구)

  • Shim, Jong-Sung;Park, Cheol-Woo;Park, Sung-Jae;Kim, Tae-Gwang;Ma, Chang-Nam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.345-348
    • /
    • 2006
  • Along with recent improvement of recycling technique, the quality of the recycled concrete aggregate have become very competitive to the natural concrete aggregate. Therefore, a practical use of the recycled concrete aggregate may be possible for structural members. Majority studies about the recycled concrete aggregate was emphasized a limitation of fundamental study concerned with a strength characteristics and durability of the recycled aggregate concrete. Therefore, for the extension of application of recycled concrete aggregate, this investigation verifies the strength characteristics and structural performances of PHC piles used with coarce and fine recycled concrete aggregate.

  • PDF

pH Characteristics of the Recycled Aggregate Being carbonated by Dry Ice (드라이아이스로 탄산화 처리한 순환골재의 pH 특성)

  • Hong, Sung-Rog;Bok, Young-Jae;Sung, Jong-Hyun;Lee, Il-Sun;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.337-338
    • /
    • 2013
  • Recent research is needed for the reduction of the pH of the recycled aggregates, recycled aggregates for alkali social problems have emerged. This was confirmed through preliminary experiments using a self-made reactor with dry ice, the possibility of reducing the pH of the recycled aggregates. The pH reduction of coarse recycled aggregates plant was made to apply the field to the middle of construction waste treatment process to reduce the pH of the plant room, and measured the pH change with time. The measurement results showed that dry ice after the reaction, the pH of the aggregate 5% reduction than untreated recycled aggregates.

  • PDF

Mechanical properties of recycled aggregate concrete produced with Portland Pozzolana Cement

  • Suman, Saha;Rajasekaran, C
    • Advances in concrete construction
    • /
    • v.4 no.1
    • /
    • pp.27-35
    • /
    • 2016
  • The quantity of construction and demolition waste has been greatly increasing recently. It causes many problems to the environment. For this reason, demolition waste management becomes inevitable in order to overcome the environmental issues. The present study aims to evaluate the effects of using recycled coarse aggregate, which is generated from construction and demolition waste, on the properties of recycled aggregate concrete. An experimental investigation on the strength characteristics of concrete made with recycled coarse aggregate is presented and discussed in this paper. In this study, Portland Pozzolana Cement (fly ash based) is used instead of ordinary Portland cement. The results of this investigation show the possibility of the use of recycled coarse aggregates in the production of fresh concrete. Use of demolition waste as coarse aggregate will lead to a cleaner environment with a significant reduction of the consumption of natural resources. A comparative study on the strength characteristics of recycled aggregate concrete made with Ordinary Portland Cement and Portland Pozzolana Cement is presented and discussed in this paper.

Characteristics of sustainable concrete incorporating recycled coarse aggregates and colloidal nano-silica

  • Mukharjee, Bibhuti Bhusan;Barai, Sudhirkumar V
    • Advances in concrete construction
    • /
    • v.3 no.3
    • /
    • pp.187-202
    • /
    • 2015
  • The present study addresses about the development of sustainable concrete utilizing recycled coarse aggregates manufactured form waste concrete and colloidal Nano-Silica. Experimental investigations are carried out to determine compressive and tensile strength of concrete mixes designed with recycled coarse aggregates and different percentages of Nano-Silica. Moreover, water absorption, density and volume voids of concrete mixes are also examined to ascertain the influence of Nano-Silica on behavior of recycled aggregate concrete. The outcomes of the research depict that properties of concrete mixes are significantly affected with the introduction of recycled coarse aggregates in place of the natural coarse aggregates. However, the study reveals that the depletion of behavior of recycled aggregate concrete could be restored with the incorporation of little amount (3%) of Nano-Silica.

Effect of high temperature on the bond performance between steel bars and recycled aggregate concrete

  • Yan, Lan-Lan;Liang, Jiong-Feng;Zhao, Yan-gang
    • Computers and Concrete
    • /
    • v.23 no.3
    • /
    • pp.155-160
    • /
    • 2019
  • The use of recycled aggregate concrete for the purpose of environmental and resource conservation has gained increasing interest in construction engineering. Nevertheless, few studies have reported on the bonding performance of the bars in recycled aggregate concrete after exposed to high temperatures. In this paper, 72 pull-out specimens and 36 cubic specimens with different recycled coarse aggregate content (i.e., 0%, 50%,100%) were cast to evaluate the bond behavior between recycled aggregate concrete and steel bar after various temperatures ($20^{\circ}C$, $200^{\circ}C$, $400^{\circ}C$, $600^{\circ}C$). The results show that the recycled aggregate concrete pull-out specimens exhibited similar bond stress-slip curves at both ambient and high temperature. The bond strength declined gradually with the increase of the temperature. On the basis of a regression analysis of the experimental data, a revised bond strength mode and peak slip ratios relationship model were proposed to predict the post-heating bond-slip behavior between recycled aggregate concrete and steel bar.

Evaluation of Properties of Recycled Concretes for use in Surface and Base Course Concrete (도로표층 및 기층용 콘크리트로 재생 콘크리트의 특성 연구)

  • 김광우;도영수;이상범;정일권
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.27-32
    • /
    • 1999
  • This study was performed to evaluate properties of recycled concrete for roadway pavement. Recycled concretes was manufactured for the target compressive strength of 280kg/$\textrm{cm}^2$ and 180kg/$\textrm{cm}^2$ with recycled aggregate ratio of 0%, 20%, 40%, 60%, 80%, respectively. Laboratory experiment was conducted for testing properties of fresh concrete and concrete strength at curing 28days and durability by freezing and thawing treatment. The study result presented a maximum replacement ratio of recycled material.

  • PDF