• Title/Summary/Keyword: recursive pattern

Search Result 47, Processing Time 0.025 seconds

Estimation of Electrical Loads Patterns by Usage in the Urban Railway Station by RNN (RNN을 활용한 도시철도 역사 부하 패턴 추정)

  • Park, Jong-young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1536-1541
    • /
    • 2018
  • For effective electricity consumption in urban railway station such as peak load shaving, it is important to know each electrical load pattern by various usage. The total electricity consumption in the urban railway substation is already measured in Korea, but the electricity consumption for each usage is not measured. The author proposed the deep learning method to estimate the electrical load pattern for each usage in the urban railway substation with public data such as weather data. GRU (gated recurrent unit), a variation on the LSTM (long short-term memory), was used, which aims to solve the vanishing gradient problem of standard a RNN (recursive neural networks). The optimal model was found and the estimation results with that were assessed.

Designing a Microworld for Recursive Pasterns and Algebra (재귀적 패턴과 거북 마이크로월드 설계)

  • Kim Hwa-Kyung
    • The Mathematical Education
    • /
    • v.45 no.2 s.113
    • /
    • pp.165-176
    • /
    • 2006
  • In this paper, we consider changes of algebra strands around the world. And we suggest needs of designing new computer environment where we make and manipulate geometric recursive patterns. For this purpose, we first consider relations among symbols, meanings and patterns. And we also consider Logo environment and characterize algebraic features. Then we introduce L-system which is considered as action letters and subgroup of turtle group. There are needs to be improved since there exists some ambiguity between sign and action. Based on needs of improving the previous L-system, we suggest new commands in JavaMAL microworld. So we design a microworld for recursive patterns and consider meanings of letters in new environments. Finally, we consider the method to integrate L-system and other existing microworlds, such as Logo and DGS. Specially, combining Logo and DGS, we consider the movement of such tiles and folding nets by L-system commands. And we discuss possible benefits in this environment.

  • PDF

A Study on the Acceleration and Deceleration Control of Free-Form Surfaces (자유곡면의 가감속 제어에 관한 연구)

  • Baek, Dae Kyun;Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.9
    • /
    • pp.745-751
    • /
    • 2016
  • This paper presents the acceleration and deceleration control of free-form surfaces. A rapid variation of acceleration (or Deceleration) drives the system into a machine shock, resulting in the inaccuracy of the path control of the NURBS curve. The pattern of acceleration control can be established using the curvature of the NURBS curve. The curvature can be easily calculated from the first and second derivative of the NURBS curve used in Taylor's expansion for NURBS interpolation. However, the derivatives are not used in the recursive method for NURBS interpolation. Hence, we attempted the difference-derivatives for calculating the NURBS curvature. Both, Taylor's expansion and the recursive method, are used jointly for controlling the acceleration in the same interpolation algorithm.

Quadrangulation of Sewing Pattern Based on Recursive Geometry Decomposition (재귀적 기하 분해 방법에 기반한 봉제 패턴의 사각화 방법)

  • Gizachew, Gocho Yirga;Jeong, Moon Hwan;Ko, Hyeong Seok
    • Journal of the Korea Computer Graphics Society
    • /
    • v.22 no.2
    • /
    • pp.1-10
    • /
    • 2016
  • The computational cost of clothing simulation and rendering is mainly depends on the type of mesh and its quality. Thus, quadrilateral meshes are generally preferred over triangular meshes for the reasons of accuracy and efficiency. This paper presents a method of quadrangulating sewing pattern based on the recursive geometry decomposition method. Herein, we proposed two simple improvements to the previous algorithms. The first one deals with the recursive geometry decomposition in which the physical domain is decomposed into simple and mappable regions. The second proposed algorithm deals with the vertex validation in which the invalid vertex classification can be validated.

Design of RBF Neural Networks Based on Recursive Weighted Least Square Estimation for Processing Massive Meteorological Radar Data and Its Application (방대한 기상 레이더 데이터의 원할한 처리를 위한 순환 가중최소자승법 기반 RBF 뉴럴 네트워크 설계 및 응용)

  • Kang, Jeon-Seong;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.99-106
    • /
    • 2015
  • In this study, we propose Radial basis function Neural Network(RBFNN) using Recursive Weighted Least Square Estimation(RWLSE) to effectively deal with big data class meteorological radar data. In the condition part of the RBFNN, Fuzzy C-Means(FCM) clustering is used to obtain fitness values taking into account characteristics of input data, and connection weights are defined as linear polynomial function in the conclusion part. The coefficients of the polynomial function are estimated by using RWLSE in order to cope with big data. As recursive learning technique, RWLSE which is based on WLSE is carried out to efficiently process big data. This study is experimented with both widely used some Machine Learning (ML) dataset and big data obtained from meteorological radar to evaluate the performance of the proposed classifier. The meteorological radar data as big data consists of precipitation echo and non-precipitation echo, and the proposed classifier is used to efficiently classify these echoes.

Design of Incremental FCM-based Recursive RBF Neural Networks Pattern Classifier for Big Data Processing (빅 데이터 처리를 위한 증분형 FCM 기반 순환 RBF Neural Networks 패턴 분류기 설계)

  • Lee, Seung-Cheol;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1070-1079
    • /
    • 2016
  • In this paper, the design of recursive radial basis function neural networks based on incremental fuzzy c-means is introduced for processing the big data. Radial basis function neural networks consist of condition, conclusion and inference phase. Gaussian function is generally used as the activation function of the condition phase, but in this study, incremental fuzzy clustering is considered for the activation function of radial basis function neural networks, which could effectively do big data processing. In the conclusion phase, the connection weights of networks are given as the linear function. And then the connection weights are calculated by recursive least square estimation. In the inference phase, a final output is obtained by fuzzy inference method. Machine Learning datasets are employed to demonstrate the superiority of the proposed classifier, and their results are described from the viewpoint of the algorithm complexity and performance index.

Use of learning method to generate of motion pattern for robot (학습기법을 이용한 로봇의 모션패턴 생성 연구)

  • Kim, Dong-won
    • Journal of Platform Technology
    • /
    • v.6 no.3
    • /
    • pp.23-30
    • /
    • 2018
  • A motion pattern generation is a process of calculating a certain stable motion trajectory for stably operating a certain motion. A motion control is to make a posture of a robot stable by eliminating occurring disturbances while a robot is in operation using a pre-generated motion pattern. In this paper, a general method of motion pattern generation for a biped walking robot using universal approximator, learning neural networks, is proposed. Existing techniques are numerical methods using recursive computation and approximating methods which generate an approximation of a motion pattern by simplifying a robot's upper body structure. In near future other approaches for the motion pattern generations will be applied and compared as to be done.

The Analysis of Flood Propagation Characteristics using Recursive Call Algorithm (재귀호출 알고리듬 기반의 홍수전파 특성 분석)

  • Lee, Geun Sang;Jang, Young Wun;Choi, Yun Woong
    • Spatial Information Research
    • /
    • v.21 no.5
    • /
    • pp.63-72
    • /
    • 2013
  • This paper analyzed the flood propagation characteristics of each flood elevation due to failure of embankment in Muju Namdae Stream using recursive call algorithm. A flood propagation order by the flood elevation was estimated by setting destruction point at Beonggu and Chasan small dam through recursive call algorithm and then, the number of grids of each flood propagation order and accumulated inundation area were calculated. Based on the flood propagation order and the grid size of DEM, flood propagation time could be predicted each flood elevation. As a result, the study could identify the process of flood propagation through distribution characteristic of the flood propagation order obtained from recursive call algorithm, and could provide basic data for protection from flood disaster by selecting the flood vulnerable area through the gradient pattern of the graph for accumulated inundation area each flood propagation order. In addition, the prediction of the flood propagation time for each flood water level using this algorithm helped provide valuable information to calculate the evacuation path and time during the flood season by predicting the flood propagation time of each flood water level.

Semi-Supervised Recursive Learning of Discriminative Mixture Models for Time-Series Classification

  • Kim, Minyoung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.186-199
    • /
    • 2013
  • We pose pattern classification as a density estimation problem where we consider mixtures of generative models under partially labeled data setups. Unlike traditional approaches that estimate density everywhere in data space, we focus on the density along the decision boundary that can yield more discriminative models with superior classification performance. We extend our earlier work on the recursive estimation method for discriminative mixture models to semi-supervised learning setups where some of the data points lack class labels. Our model exploits the mixture structure in the functional gradient framework: it searches for the base mixture component model in a greedy fashion, maximizing the conditional class likelihoods for the labeled data and at the same time minimizing the uncertainty of class label prediction for unlabeled data points. The objective can be effectively imposed as individual mixture component learning on weighted data, hence our mixture learning typically becomes highly efficient for popular base generative models like Gaussians or hidden Markov models. Moreover, apart from the expectation-maximization algorithm, the proposed recursive estimation has several advantages including the lack of need for a pre-determined mixture order and robustness to the choice of initial parameters. We demonstrate the benefits of the proposed approach on a comprehensive set of evaluations consisting of diverse time-series classification problems in semi-supervised scenarios.

An Incremental Rule Extraction Algorithm Based on Recursive Partition Averaging (재귀적 분할 평균에 기반한 점진적 규칙 추출 알고리즘)

  • Han, Jin-Chul;Kim, Sang-Kwi;Yoon, Chung-Hwa
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.1
    • /
    • pp.11-17
    • /
    • 2007
  • One of the popular methods used for pattern classification is the MBR (Memory-Based Reasoning) algorithm. Since it simply computes distances between a test pattern and training patterns or hyperplanes stored in memory, and then assigns the class of the nearest training pattern, it cannot explain how the classification result is obtained. In order to overcome this problem, we propose an incremental teaming algorithm based on RPA (Recursive Partition Averaging) to extract IF-THEN rules that describe regularities inherent in training patterns. But rules generated by RPA eventually show an overfitting phenomenon, because they depend too strongly on the details of given training patterns. Also RPA produces more number of rules than necessary, due to over-partitioning of the pattern space. Consequently, we present the IREA (Incremental Rule Extraction Algorithm) that overcomes overfitting problem by removing useless conditions from rules and reduces the number of rules at the same time. We verify the performance of proposed algorithm using benchmark data sets from UCI Machine Learning Repository.