• 제목/요약/키워드: recurrent neural network

검색결과 583건 처리시간 0.024초

순환신경망을 이용한 자기장 기반 실내측위시스템 (Indoor Positioning System using Geomagnetic Field with Recurrent Neural Network Model)

  • 배한준;최린;박병준
    • 한국차세대컴퓨팅학회논문지
    • /
    • 제14권6호
    • /
    • pp.57-65
    • /
    • 2018
  • BLE 또는 Wi-Fi 기반 지문인식과 같은 기존의 RF 신호 기반 실내 위치인식 기술은 RF 신호의 불안정한 수신 신호 세기로 인해 소규모 실내 환경에서도 작지 않은 오차를 발생시키며 공항, 백화점과 같은 대규모 실내 환경에 적용하기가 어렵다. 이 논문에서는 RF 신호보다 안정적인 신호 강도를 갖는 자기장 신호를 이용한 실내측위 시스템을 제안한다. 유사한 자기장 값이 같은 실내 공간에 여럿 존재하지만, 사용자의 이동이 계속됨에 따라 자기장 신호는 고유 시퀀스를 가지게 된다. 본 논문에서는 시간에 따라 변화하는 센서 데이터 시퀀스를 인식하는 데 효과적인 순환 신경망 (Recurrent neural network, RNN)이라 불리는 심층 신경망 모델을 사용하여 사용자의 현재 위치와 이동 경로를 추적한다. 제안된 신경망 기반의 지자기 실내측위시스템의 평가를 위해 약 $94m{\times}26$ 크기의 교내 테스트베드에서 자기장 맵을 구축하고 자기장맵으로부터 추출한 다양한 이동 경로와 위치 정보를 이용하여 RNN을 학습한 결과, 테스트베드에서 제안된 시스템은 평균 1.20 미터의 테스트 측위 오차를 달성할 수 있었다.

소리 데이터를 이용한 불량 모터 분류에 관한 연구 (A Study on the Classification of Fault Motors using Sound Data)

  • 장일식;박구만
    • 방송공학회논문지
    • /
    • 제27권6호
    • /
    • pp.885-896
    • /
    • 2022
  • 제조에서의 모터 불량은 향후 A/S 및 신뢰성에 중요한 역활을 한다. 모터의 불량 구분은 소리, 전류, 진동등의 측정을 통해 검출한다. 본 논문에서 사용한 데이터는 자동차 사이드미러 모터 기어박스의 소리를 사용하였다. 모터 소리는 3가지의 클래스로 구성되어 있다. 소리 데이터는 멜스펙트로그램을 통한 변환 과정을 거쳐 네트워크 모델에 입력된다. 본 논문에서는 불량 모터 구분 성능을 올리기 위한 데이터 증강, 클래스 불균형에 따는 다양한 데이터 재샘플링, 재가중치 조절, 손실함수의 변경, 표현 학습과 클래스 구분의 두 단계 분리 방법 등 다양한 방법을 적용하였으며, 추가적으로 커리큘럼 러닝 방법, 자기 스페이스 학습 방법 등을 Bidirectional LSTM Attention, Convolutional Recurrent Neural Network, Multi-Head Attention, Bidirectional Temporal Convolution Network, Convolution Neural Network 등 총 5가지 네트워크 모델을 통하여 비교하고, 모터 소리 구분에 최적의 구성을 찾을 수 있었다.

LSTM Network with Tracking Association for Multi-Object Tracking

  • Farhodov, Xurshedjon;Moon, Kwang-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • 한국멀티미디어학회논문지
    • /
    • 제23권10호
    • /
    • pp.1236-1249
    • /
    • 2020
  • In a most recent object tracking research work, applying Convolutional Neural Network and Recurrent Neural Network-based strategies become relevant for resolving the noticeable challenges in it, like, occlusion, motion, object, and camera viewpoint variations, changing several targets, lighting variations. In this paper, the LSTM Network-based Tracking association method has proposed where the technique capable of real-time multi-object tracking by creating one of the useful LSTM networks that associated with tracking, which supports the long term tracking along with solving challenges. The LSTM network is a different neural network defined in Keras as a sequence of layers, where the Sequential classes would be a container for these layers. This purposing network structure builds with the integration of tracking association on Keras neural-network library. The tracking process has been associated with the LSTM Network feature learning output and obtained outstanding real-time detection and tracking performance. In this work, the main focus was learning trackable objects locations, appearance, and motion details, then predicting the feature location of objects on boxes according to their initial position. The performance of the joint object tracking system has shown that the LSTM network is more powerful and capable of working on a real-time multi-object tracking process.

Associative Motion Generation for Humanoid Robot Reflecting Human Body Movement

  • Wakabayashi, Akinori;Motomura, Satona;Kato, Shohei
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제12권2호
    • /
    • pp.121-130
    • /
    • 2012
  • This paper proposes an intuitive real-time robot control system using human body movement. Recently, it has been developed that motion generation for humanoid robots with reflecting human body movement, which is measured by a motion capture. However, in the existing studies about robot control system by human body movement, the detailed structure information of a robot, for example, degrees of freedom, the range of motion and forms, must be examined in order to calculate inverse kinematics. In this study, we have proposed Associative Motion Generation as humanoid robot motion generation method which does not need the detailed structure information. The associative motion generation system is composed of two neural networks: nonlinear principal component analysis and Jordan recurrent neural network, and the associative motion is generated with the following three steps. First, the system learns the correspondence relationship between an indication and a motion using training data. Second, associative values are extracted for associating a new motion from an unfamiliar indication using nonlinear principal component analysis. Last, the robot generates a new motion through calculation by Jordan recurrent neural network using the associative values. In this paper, we propose a real-time humanoid robot control system based on Associative Motion Generation, that enables user to control motion intuitively by human body movement. Through the task processing and subjective evaluation experiments, we confirmed the effective usability and affective evaluations of the proposed system.

기계학습 기반 내부자위협 탐지기술: RNN Autoencoder를 이용한 비정상행위 탐지 (Detecting Insider Threat Based on Machine Learning: Anomaly Detection Using RNN Autoencoder)

  • 하동욱;강기태;류연승
    • 정보보호학회논문지
    • /
    • 제27권4호
    • /
    • pp.763-773
    • /
    • 2017
  • 최근 몇 년 동안 지속적으로 개인정보유출, 기술유출 사고가 빈번하게 발생하고 있다. 조사에 따르면 이러한 유출 사고의 주체로 가장 많은 부분을 차지하고 있는 것이 조직 내부에 있는 '내부자'로, 내부자에 의한 기술유출은 조직에 막대한 피해를 주기 때문에 점점 더 중요한 문제로 여겨지고 있다. 본 논문에서는 내부자위협을 방지하기 위해 기계학습을 이용하여 직원들의 일반적인 정상행위를 학습하고, 이에 벗어나는 비정상 행위를 탐지하기 방법에 대한 연구를 하고자 한다. Neural Network 모델 중 시계열 데이터의 학습에 적합한 Recurrent Neural Network로 구성한 Autoencoder를 구현하여 비정상 행위를 탐지하는 방법에 대한 실험을 진행하였고, 이 방법에 대한 유효성을 검증하였다.

Prefilter 형태의 카오틱 신경망을 이용한 로봇 경로 제어 (Robot Trajectory Control using Prefilter Type Chaotic Neural Networks Compensator)

  • 강원기;최운하김상희
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 하계종합학술대회논문집
    • /
    • pp.263-266
    • /
    • 1998
  • This paper propose a prefilter type inverse control algorithm using chaotic neural networks. Since the chaotic neural networks show robust characteristics in approximation and adaptive learning for nonlinear dynamic system, the chaotic neural networks are suitable for controlling robotic manipulators. The structure of the proposed prefilter type controller compensate velocity of the PD controller. To estimate the proposed controller, we implemented to the Cartesian space control of three-axis PUMA robot and compared the final result with recurrent neural network(RNN) controller.

  • PDF

공진화를 이용한 신경회로망의 구조 최적화 (Structure optimization of neural network using co-evolution)

  • 전효병;김대준;심귀보
    • 전자공학회논문지S
    • /
    • 제35S권4호
    • /
    • pp.67-75
    • /
    • 1998
  • In general, Evoluationary Algorithm(EAs) are refered to as methods of population-based optimization. And EAs are considered as very efficient methods of optimal sytem design because they can provice much opportunity for obtaining the global optimal solution. This paper presents a co-evolution scheme of artifical neural networks, which has two different, still cooperatively working, populations, called as a host popuation and a parasite population, respectively. Using the conventional generatic algorithm the host population is evolved in the given environment, and the parastie population composed of schemata is evolved to find useful schema for the host population. the structure of artificial neural network is a diagonal recurrent neural netork which has self-feedback loops only in its hidden nodes. To find optimal neural networks we should take into account the structure of the neural network as well as the adaptive parameters, weight of neurons. So we use the genetic algorithm that searches the structure of the neural network by the co-evolution mechanism, and for the weights learning we adopted the evolutionary stategies. As a results of co-evolution we will find the optimal structure of the neural network in a short time with a small population. The validity and effectiveness of the proposed method are inspected by applying it to the stabilization and position control of the invered-pendulum system. And we will show that the result of co-evolution is better than that of the conventioal genetic algorithm.

  • PDF

언센티드 칼만필터 훈련 알고리즘에 의한 순환신경망의 파라미터 추정 및 비선형 채널 등화에의 응용 (Parameter Estimation of Recurrent Neural Networks Using A Unscented Kalman Filter Training Algorithm and Its Applications to Nonlinear Channel Equalization)

  • 권오신
    • 한국지능시스템학회논문지
    • /
    • 제15권5호
    • /
    • pp.552-559
    • /
    • 2005
  • 실시간 순환형 훈련 알고리즘(RTRL)과 같이 경사법에 의해 훈련되는 순환형 뉴럴 네트웍(RNN)은 수렴속도가 매우 느린 단점을 지니고 있다. 이 알고리즘은 또한 오차 역전달 처리과정에서 결코 쉽지 않은 미분 계산을 필요로 한다. 본 논문에서는 완전하게 결합된 RNN의 훈련을 위하여 소위 언센티드 칼만필터라고 불리우는 미분없는 칼만필터 훈련 알고리즘을 시스템의 상태공간 상에서 표현하였다. 미분없는 칼만필터 훈련 알고리즘은 순환형 뉴럴 네트웍 훈련시 미분 계산 없이 매우 빠른 수렴속도와 좋은 추정 성능을 보여준다. 비선형 채널 등화 실험을 통하여 미분 없는 칼만필터 훈련 알고리즘을 이용한 RNN의 성능이 향상되었음을 보였다.

PMSM Servo Drive for V-Belt Continuously Variable Transmission System Using Hybrid Recurrent Chebyshev NN Control System

  • Lin, Chih-Hong
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.408-421
    • /
    • 2015
  • Because the wheel of V-belt continuously variable transmission (CVT) system driven by permanent magnet synchronous motor (PMSM) has much unknown nonlinear and time-varying characteristics, the better control performance design for the linear control design is a time consuming job. In order to overcome difficulties for design of the linear controllers, a hybrid recurrent Chebyshev neural network (NN) control system is proposed to control for a PMSM servo-driven V-belt CVT system under the occurrence of the lumped nonlinear load disturbances. The hybrid recurrent Chebyshev NN control system consists of an inspector control, a recurrent Chebyshev NN control with adaptive law and a recouped control. Moreover, the online parameters tuning methodology of adaptive law in the recurrent Chebyshev NN can be derived according to the Lyapunov stability theorem and the gradient descent method. Furthermore, the optimal learning rate of the parameters based on discrete-type Lyapunov function is derived to achieve fast convergence. The recurrent Chebyshev NN with fast convergence has the online learning ability to respond to the system's nonlinear and time-varying behaviors. Finally, to show the effectiveness of the proposed control scheme, comparative studies are demonstrated by experimental results.

카오틱 신경망을 이용한 로봇 매니퓰레이터용 토크보상제어기의 설계 (Design of Torque Compensatory Controller for Robot Manipulator using Chaotic Neural Networks)

  • 문찬;김상희;박원우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.530-532
    • /
    • 1998
  • In this paper, We Designed the torque compensatory controller for robot manipulator using modified chaotic neural networks with self feedback loop. The proposed torque compensatory controller compensate torque of the PD controller. In order to estimate the proposed controller, we implemented to the Cartesian space control of three-axis PUMA robot and compared the simulation results with recurrent neural networks(RNNs) controller. Simulation results show that the learning error drastically decrease at on-line learning. The proposed CNNs controller shows much better control performance and shorter processing time compared to the recurrent neural network controller in the robot trajectory control.

  • PDF