• Title/Summary/Keyword: rectangular thin plates

Search Result 69, Processing Time 0.024 seconds

A Study on Vibration Characteristics in Water Tank Structures -Change of Aspect Ratio and Pressure Distribution- (접수 탱크 구조물의 진동특성에 관한 연구 - 종횡비 변화와 압력분포 -)

  • 배성용
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.6
    • /
    • pp.80-87
    • /
    • 2003
  • Tank structures in ships are in contact with various fluid. The vibration characteristics of those structures are strongly affected by the added mass due to containing fluid. It is important to predict vibration characteristics of tank structures, but it is difficult to do. That's because the interaction problem concerned with the free surface, the variation of water depth and stiffener is to be considered between the fluid and the structure. Many authors have studied vibration of rectangular tank structures containing water. Kito studied added mass effect of water in contact with thin elastic flat plates. Kim et al. studied flexural vibration of stiffened plates in contact with water. However, few researches on dynamic interaction tank walls with water are reported in the vibration of rectangular tanks recently. in the present report, the coupling effect of added mass of fluid and structural constraint between panels on each vibration mode changing breadth of elastic plate, and dynamic pressure distribution have investigated numerically and discussed.

Large Amplitude Nonlinear Vibration of Rectangular Plates with Simply Support and Fixed Edges (단순지지 및 고정된 직사각형평판의 비선형변동)

  • ;;Kim, Beam Soo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.1 no.3
    • /
    • pp.141-145
    • /
    • 1977
  • In this paper, approximate solutions of the von Karman equations for the free flexural vibration of a transversely isotropic thin rectangular plate with two simply supported edges and two clamped edges are obtained. Applying one term Ritz-Galerkin procedure, the spatial dependent part of the equation is separated and time dependent function is found to be the Duffing's equation. Then the relation between nonlinear period and amplitude of the vibration is obtained by using averaging method which is a method of the perturbation procedure. It can be seen that averaging method is easy and agrees well with prior results.

Inelastic behavior of standard and retrofitted rectangular hollow sectioned struts -II: Experimental study

  • Boutros, Medhat;McCulloch, James;Scott, Damian
    • Structural Engineering and Mechanics
    • /
    • v.10 no.5
    • /
    • pp.505-516
    • /
    • 2000
  • This paper is a presentation of an experimental study about the elastic-partly plastic behavior of rectangular hollow steel pinned struts subjected to static cyclic axial loading and the evaluation of the compressive strength of retrofitted crooked struts. Retrofitting is achieved by welding stiffening plates along the webs of damaged struts. The material follows a quasi-kinematic hardening hysteresis path as observed from coupon tests. Test results are compared to those of an analytical model showing a good agreement for both standard and retrofitted struts. The comparison of different stiffener plate dimensions shows that more efficient strengthening is achieved by using long thin stiffeners rather than short thick ones.

A Numerical Analysis on Acoustic Radiation Efficiency of One Side-Wetted Rectangular Mindlin Plate with Simply Supported Boundaries (Mindlin 판 이론을 적용한 단순지지 단면 접수평판의 음향방사효율 수치해석)

  • Lee, Jong-Ho;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.4
    • /
    • pp.281-288
    • /
    • 2018
  • Acoustic radiation efficiency is a crucial factor to estimate Underwater Radiated Noise (URN) of ships accurately. This paper describes a numerical method to analyse acoustic radiation efficiency of one side-wetted rectangular Mindlin plate with simply supported boundaries excited by a harmonic point force. Transverse displacements of plate and acoustic radiation pressures are evaluated by the mode superposition method. The acoustic radiation efficiencies analyzed by both Mindlin and thin plate theories show little differences at monopole and corner modes of low frequency regions but relatively large differences at edge and critical modes of high frequency regions. Especially, the critical frequency with the highest acoustic radiation efficiency evaluated by the Mindlin plate theory is higher than that of thin plate theory. In addition, the acoustic loading effect of fluid also increases bending wave-number of plate and its critical frequency. Finally, the acoustic radiation characteristics of plates with different aspect ratios and thicknesses through numerical analyses are investigated and discussed.

Analysis of Infinite Periodic Frequency Selective Surface using Method of Moment (모멘트법을 이용한 주기적 배열을 갖는 무한 크기의 주파수선택 표면(FSS) 해석)

  • 강봉수;강부식;김흥수
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.290-293
    • /
    • 2003
  • In this paper, infinite frequency selective surface comprised with rectangular plates which are arranged periodically is analyzed using Method of Moment based on Galerkin's method. In analysis, it is assumed that the plates are infinite thin perfect conductors. Based on this assumption, the reflection characteristics of the FSS is compared according to the polarization of plane-wave and the direction of incidence. In the results, the variation of reflection characteristics of the FSS highly depends on the direction of incidence when the polarization of the plane-wave is parallel to the plane of incidence, but the variation is nearly independent upon direction of incidence when the polarization of the plane-wave is perpendicular to the plane of incidence.

  • PDF

Fuzzy control for geometrically nonlinear vibration of piezoelectric flexible plates

  • Xu, Yalan;Chen, Jianjun
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.163-177
    • /
    • 2012
  • This paper presents a LMI(linear matrix inequality)-based fuzzy approach of modeling and active vibration control of geometrically nonlinear flexible plates with piezoelectric materials as actuators and sensors. The large-amplitude vibration characteristics and dynamic partial differential equation of a piezoelectric flexible rectangular thin plate structure are obtained by using generalized Fourier series and numerical integral. Takagi-Sugeno (T-S) fuzzy model is employed to approximate the nonlinear structural system, which combines the fuzzy inference rule with the local linear state space model. A robust fuzzy dynamic output feedback control law based on the T-S fuzzy model is designed by the parallel distributed compensation (PDC) technique, and stability analysis and disturbance rejection problems are guaranteed by LMI method. The simulation result shows that the fuzzy dynamic output feedback controller based on a two-rule T-S fuzzy model performs well, and the vibration of plate structure with geometrical nonlinearity is suppressed, which is less complex in computation and can be practically implemented.

Shear buckling analysis of laminated plates on tensionless elastic foundations

  • Dong, Jianghui;Ma, Xing;Zhuge, Yan;Mills, Julie E.
    • Steel and Composite Structures
    • /
    • v.24 no.6
    • /
    • pp.697-709
    • /
    • 2017
  • The current study addresses the local buckling analysis of an infinite thin rectangular symmetrically laminated composite plate restrained by a tensionless Winkler foundation and subjected to uniform in-plane shear loading. An analytic method (i.e., one-dimensional mathematical method) is used to achieve the analytical solution estimate of the contact buckling coefficient. In addition, to study the effect of ply angle and foundation stiffness on the critical buckling coefficients for the laminated composite plates, the parametric studies are implemented. Moreover, the convergence for finite element (FE) mesh is analysed, and then the examples in the parametric study are validated by the FE analysis. The results show that the FE analysis has a good agreement with the analytical solutions. Finally, an example with the analytical solution and FE analysis is presented to demonstrate the availability and feasibility of the presented analytical method.

Semi-analytical solution for buckling of SMA thin plates with linearly distributed loads

  • Parizi, Fatemeh Salemizadeh;Mohammadi, Meisam
    • Structural Engineering and Mechanics
    • /
    • v.70 no.6
    • /
    • pp.661-669
    • /
    • 2019
  • Buckling analysis of shape memory alloy (SMA) rectangular plates subjected to uniform and linearly distributed inplane loads is the main objective in the present paper. Brinson's model is developed to express the constitutive characteristics of SMA plate. Using the classical plate theory and variational approach, stability equations are derived. In addition to external inplane mechanical loads, the plate is subjected to the pre-stresses caused by the recovery stresses that are generated during martensitic phase transformation. Ritz method is used for solving the governing stability equations. Finally, the effects of conditions on the edges, thickness, aspect ratio, temperature and pre-strains on the critical buckling loads of SMA plate are investigated in details.

Application of the exact spectral element method in the analysis of the smart functionally graded plate

  • Farhad Abad;Jafar Rouzegar;Saeid Lotfian
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.297-313
    • /
    • 2023
  • This study aims to extend the application of the spectral element method (SEM) to wave propagation and free vibration analysis of functionally graded (FG) plates integrated with thin piezoelectric layers, plates with tapered thickness and structure on elastic foundations. Also, the dynamic response of the smart FG plate under impact and moving loads is presented. In this paper, the dynamic stiffness matrix of the smart rectangular FG plate is determined by using the exact dynamic shape functions based on Mindlin plate assumptions. The low computational time and results' independence with the number of elements are two significant features of the SEM. Also, to prove the accuracy and efficiency of the SEM, results are compared with Abaqus simulations and those reported in references. Furthermore, the effects of boundary conditions, power-law index, piezoelectric layers thickness, and type of loading on the results are studied.

The Effect of the Area Ratio and Change of Location on the Buckling Stress of Two Rectangular Plates Spot-welded (면적비와 위치변화가 점용접된 두 사각평판의 좌굴응력에 미치는 영향)

  • Han, Geun-Jo;An, Seong-Chan;Sim, Jae-Jun;Lee, Hyeon-Cheol;Jang, Hwal-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.54-59
    • /
    • 2001
  • The stability of a thin plate structure is very crucial problem which results buckling. Because the buckling strength of thin plates is lower than the yield strength of the material, reinforcement plate must be used to increase the buckling strength. And, in this case, spot welding is commonly used, however, the spot welded joints are practically designed by experimental decisions, so it is Inefficient and has the risks of buckling demolition. In this study, two parameters, such as the area ratio and the distance ratio of spot welding which have influence on the buckling strength, should be chosen. Under compressive and shearing load, the effect of two parameters on the critical stress is discussed.

  • PDF