• Title/Summary/Keyword: rectangular tank

Search Result 160, Processing Time 0.023 seconds

Effect of Chamfering Top Corners on Liquid Sloshing in the Three-dimensional Rectangular Tank (챔퍼가 3차원 사각 탱크 내부의 액체 슬로싱에 미치는 영향)

  • Jung, Jae-Hwan;Lee, Chang-Yeol;Yoon, Hyun-Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.4
    • /
    • pp.508-516
    • /
    • 2010
  • This study aims at investigating the effect of the chamfer on the liquid sloshing in the three-dimensional (3D) rectangular tank. In order to simulate the 3D incompressible viscous two-phase flow in the 3D tank with partially filled liquid, the present study has adopted the volume of fluid (VOF) method based on the finitevolume method which has been well verified by comparing with the results of the relevant previous researches. The effects of the chamfering top corners of the tank on the liquid sloshing characteristics have been investigated. The angle of the chamfering top corners (${\theta}$) has been changed in the range of $0^{\circ}{\leq}{\theta}{\leq}60^{\circ}$(${\Delta}{\theta}=15^{\circ}$) to observe the free surface behavior, and the effect on wall impact load. Generally, as the angle of the chamfering top corners increases, the impact pressure on the upper knuckle point decreases. However it seemed that a critical angle of the chamfering top corners exists to reveal the lowest impact pressure on the wall.

Anti-slosh effect of a horizontal porous baffle in a swaying/rolling rectangular tank: Analytical and experimental approaches

  • George, Arun;Cho, Il-Hyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.833-847
    • /
    • 2021
  • The horizontal porous baffle and its effect as an anti-slosh device have been investigated intensively in a swaying and rolling rectangular tank. To accurately assess the level at which porous baffles reduce liquid sloshing, the Matched Eigenfunction Expansion Method (MEEM) has been utilized as an analytical tool. The velocity potentials in the horizontal baffle-covered fluid region are expressed by the sum of the homogeneous and particular solutions to avoid solving the complex dispersion equation. By applying an equivalent linearized quadratic loss model, the nonlinear algebraic equation is derived and solved by implementing the Newton-Raphson iterative scheme. To prove the validity of the present theoretical model, a series of experiments have been conducted with different centered horizontal porous baffles with varying porosities and submerged depths in a swaying and rolling rectangular tank. Reasonably good agreements are obtained regarding the analytical solutions and the experiment's findings. The influence of porosity, submerged depth, and length of a centered horizontal porous baffle on anti-slosh performance have been analyzed, especially at resonance modes. The developed predictive tool can potentially provide guidelines for optimal design of the horizontal porous baffle.

The pressure distribution on the rectangular and trapezoidal storage tanks' perimeters due to liquid sloshing phenomenon

  • Saghi, Hassan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.2
    • /
    • pp.153-168
    • /
    • 2016
  • Sloshing phenomenon is a complicated free surface flow problem that increases the dynamic pressure on the sidewalls and the bottom of the storage tanks. When the storage tanks are partially filled, it is essential to be able to evaluate the fluid dynamic loads on the tank's perimeter. In this paper, a numerical code was developed to determine the pressure distribution on the rectangular and trapezoidal storage tanks' perimeters due to liquid sloshing phenomenon. Assuming the fluid to be inviscid, the Laplace equation and the nonlinear free surface boundary conditions were solved using coupled boundary element - finite element method. The code performance for sloshing modeling was validated using Nakayama and Washizu's results. Finally, this code was used for partially filled rectangular and trapezoidal storage tanks and free surface displacement, pressure distribution and horizontal and vertical forces exerted on the tanks' perimeters due to liquid sloshing phenomenon were estimated and discussed.

Radiation Problem Involving Two-layer Fluid in Frequency-Domain Numerical Wave Tank Using Artificial Damping Scheme (주파수 영역에서 인공감쇠기법을 활용한 복층 유체의 수치조파수조 방사 문제)

  • Min, Eun-Hong;Koo, Weoncheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • There are two wave modes induced by an oscillating body on the free surface of a two-layer fluid: the barotropic and baroclinic modes. To investigate the generated waves composed of two modes, a radiation problem involving a heaving rectangular body was solved in a numerical wave tank. A new artificial damping zone scheme was developed and applied in the frequency-domain analysis. The performance of this damping scheme was compared with given radiation boundary conditions for various conditions. The added mass and radiation damping coefficients for the heaving rectangular body were also calculated for various fluid-density ratios.

Estimation of Groungding Registance by Water Tank Model (수조모델 실험에 의한 접지저항 추정)

  • 최종규;고희석;이충식;김주찬
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.2
    • /
    • pp.41-48
    • /
    • 2003
  • To make a efficient grounding facilities, it is very important to assume electrical potential distribution and grounding resistance previously in grounded electrode circumference, when the current flow to grounded electrode. In this paper, grounding resistance analyzed from grounding surface electrical potential in grounded rectangular electrode plate is compared to grounding resistance by theoretical expression and grounding resistance measured by simulated experiment in the water tank.

Numerical study of sway motion of a rectangular floating body with inner sloshing phenomena (내부 슬로싱 현상을 이용한 사각상자 형태의 부유체 Sway 거동 모사에 대한 수치적 고찰)

  • Ha, Minho;Cheong, Cheolung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.161-165
    • /
    • 2013
  • In this paper, possibility of controlling motion of a floating structure using a tuned liquid damper (TLD) is numerically investigated. A TLD is a tank partially filled with liquid. Sloshing phenomena of liquid inside a tank can suppress movement of the tank subject to external excitations at specific frequency. The effects of sloshing phenomena inside a rectangular floating body on its sway motion are investigated by varying excitation frequency. First, a grid-refinement study is carried out to ensure validity of grid independent numerical solutions using present numerical techniques. Then, sway motion of the floating body subjected to wave with five different frequencies are simulated. The normalized amplitudes of sway motion of the target floating body are compared over the frequency, for cases with and without water inside the floating body. It is shown that the motion of the floating body can be minimized by matching the sloshing natural frequency to excitation frequency.

  • PDF

Finite Element Stress Analysis of Large Sized Rectangular Water Tank Structures Made of Stainless Steel Materials (대용량 스테인리스 강재 사각형 물탱크 구조의 유한요소 응력해석)

  • Son, Byung-Jik;Lee, Sang-Youl
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.85-90
    • /
    • 2015
  • The finite element stress analysis of large sized rectangular water tank structures made of stainless steel materials is carried out for various combined load cases. The combined load cases for a large size of 5,000ton are further determined using the specification(KS B6283) established from the Korean Standards Association. The changed water capacity due to the size of reservoirs could be heavily dependent for evaluating seismic effects, especially for large reservoirs. For the better numerical efficiency, the rectangular panels are modelled using the ANSYS ADPL module. The numerical results obtained for different load cases mainly show the effect of the interactions between the different load combination and other various parameters, for example, the water capacity, and different stainless steel materials. The structural performance for various load combinations is also evaluated.

Structural Analysis for Design Improvement of Stainless 5,000ton Rectangular Water Tank Structures (5,000톤급 스테인리스 사각형 물탱크 구조의 설계 개선을 위한 구조해석)

  • Son, Byung-Jik;Lee, Sang-Youl
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.4
    • /
    • pp.44-50
    • /
    • 2015
  • The finite element analysis of large sized rectangular water tank structures made of stainless steel materials is carried out for various combined load cases. The combined load cases for a large size of 5,000ton are further determined using the specification(KS B 6283) established from the Korean Standards Association. For the better numerical efficiency, the rectangular panels are modelled using the ANSYS program. The numerical results obtained for different load cases show as follows. In order to resist the snow load, it takes the influence of the gap than the size of the column. Also, in order to resist the water pressure, it shall increase the thickness of the wall. But, increasing the thickness of the wall is considerably less economical. Therefore, the angle with big thickness should be placed right next to the wall.