• Title/Summary/Keyword: rectangular element

Search Result 822, Processing Time 0.026 seconds

Tool Design in a Multi-stage Rectangular Cup Drawing Process with the Large Aspect Ratio by the Finite Element Analysis - Part I. Tool Design (유한요소해석을 이용한 세장비가 큰 직사각컴 다단계 성형공정의 금형설계 - Part I. 금형설계)

  • Kim, S.H.;Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.10 no.2
    • /
    • pp.144-150
    • /
    • 2001
  • Tool design is introduced in a multi-stage rectangular cup drawing process with the large aspect ratio. Finite element simulation is carried out to investigate deformation mechanisms with the initial tool design. The analysis reveals that the difference of the drawing ratio and the irregular contact condition produces non-uniform metal flow to cause wrinkling and severe extension. For remedy, the modification guideline is proposed in the design of the tool and process. Analysis results confirm that the modified tool design not only improves the quality of a deep-drawn product but also reduces the possibility of failure.

  • PDF

Analysis of a Rectangular Ceramic Dielectric Antenna Using Finite Element Method (유한요소법을 사용한 직육면체 세라믹 유전체 안테나의 특성 해석)

  • 문정익;김병남;박성욱
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.2
    • /
    • pp.217-227
    • /
    • 2000
  • A rectangular ceramic dielectric antenna, placed on the top of a ground plane and fed by coaxial probe, is analyzed by using the finite element method. To verify the proposed code, a rectangular ceramic dielectric antenna was fabricated and the characteristics of antenna were measured. The numerical data obtained is in good agreements with experimental result. Thus we checked the validity of our FEM code, and it can be possible to extend the analysis of the arbitrary 3-D antenna on a ground plane fed by coaxial probe.

  • PDF

Nonlinear analysis on concrete-filled rectangular tubular composite columns

  • Lu, Xilin;Yu, Yong;Kiyoshi, Tanaka;Satoshi, Sasaki
    • Structural Engineering and Mechanics
    • /
    • v.10 no.6
    • /
    • pp.577-587
    • /
    • 2000
  • A 3D nonlinear finite element computation model is presented in order to analyze the concrete filled rectangular tubular (CFRT) composite structures. The concrete material model is based on a hypo-elastic orthotropic approach while the elasto-plastic hardening model is employed for steel element. The comparisons between experimental and analytical results show that the proposed model is a relatively simple and effective one. The analytical results show that the capacity of inner concrete of CFRT column mainly depends on the two diagonal zones, and the confining effect of CFRT section is mainly concentrated on the corner zones. At the ultimate state, the side concrete along the section cracks seriously, and the corner concrete softens with the increase of compressive strains until failure.

Free Vibration Analysis of Two Rectangular Plates Coupled with Fluid (유체와 연성된 두 직사각 평판의 고유진동 해석)

  • 유계형;정경훈;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.752-755
    • /
    • 2001
  • In order to investigate the vibration characteristics of fluid-structure interaction problem, we modeled two rectangular identical plates coupled with bounded fluid. The fixed boundary condition along the plate edges and an ideal fluid are assumed. MSC/NASTRAN was used to perform finite element analysis and analytic solutions were compared with experimental solutions to verify finite element model. As a result, comparison of FEM and experiment show good agreement, and the transverse vibration modes, in-phase and out of-phase, were observed alternately in the fluid-coupled system. The effect of distance between two rectangular plates on the fluid-coupled natural frequency is investigated.

  • PDF

Finite Element Analysis of Step-down Piezoelectric Transformer with Various Shape (형태의 변화에 따른 강압용 압전변압기의 유한요소해석)

  • Chong, Hyon-Ho;Park, Tae-Gone;Kwon, Oh-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.697-700
    • /
    • 2003
  • This paper presents design and analysis of step-down piezoelectric transformer for application to AC-adapters. These transformers are consist of rectangular type and disk type multilayered piezoelectric ceramic plate. This piezoelectric transformer operated in third thickness resonance vibration mode. Finite element methode(FEM) was used for analysing transformer. Vibration mode and electric field of piezoelectric transformer were simulated at resonance frequency. As results, rectangular type transformer's output voltage was higher than the disk type. But disk type transformer's current was lagger than rectangular type. These results are assumed that disk type transformer's mixed vibration mode influence transformer's output characteristics. From these results, we expect that disk type piezoelectric transformer is more adoptable than rectangular plate type piezoelectric transformer for AC adapters.

  • PDF

Vibration Analysis of a Rectangular Plate with Stiffeners Using the Transfer Stiffness Coefficient Method (전달강성계수법을 이용한 보강재를 갖는 사각평판의 진동해석)

  • Moon, D.H.
    • Journal of Power System Engineering
    • /
    • v.9 no.1
    • /
    • pp.42-49
    • /
    • 2005
  • The vibration analysis of a rectangular plate with stiffeners is formulated by using the transfer stiffness coefficient method (TSCM). This method is based on the concept of the successive transmission of stiffness coefficients which are defined as the relationship between the force vector and the displacement vector at an arbitrary nodal line. In order to confirm the validity of the present method, bending vibration analysis for a rectangular plate with stiffener is carried out on a personal computer by using the present method and the finite element method (FEM). Through comparing computational results of the TSCM and the FEM, the effectivness of the TSCM from the viewpoint of computational cost, that is, computational time and storage is demonstrated.

  • PDF

Analytical studies on stress concentration due to a rectangular small hole in thin plate under bending loads

  • Yang, Y.;Liu, J.K.;Cai, C.W.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.6
    • /
    • pp.669-678
    • /
    • 2010
  • In general means, the stress concentration problem of elastic plate with a rectangular hole can be investigated by numerical methods, and only approximative results are derived. This paper deduces an analytical study of the stress concentration due to a rectangular hole in an elastic plate under bending loads. Base on classical elasticity theory and FEM applying the U-transformation technique, the uncoupled governing equations with 3-DOF are established, and the analytical displacement solutions of the finite element equations are derived in series form or double integral form. Therefore, the stress concentration factor can then be discussed easily and conveniently. For the plate subjected to unidirectional bending loads, the non-conforming plate bending element with four nodes and 12-DOF is taken as examples to demonstrate the application of the proposed method. The inner force distribution is obtained. The solutions are adequate for the condition when the hole is far away from the edges and the thin plate subjected to any transverse loadings.

Vibration Characteristics of A Rectangular Tank in accordance with Changing Thickness And Boundary Condition (경계조건과 두께 변화에 따른 사각탱크의 진동 특성)

  • Bae, S.Y.
    • Journal of Power System Engineering
    • /
    • v.15 no.1
    • /
    • pp.24-31
    • /
    • 2011
  • Rectangular box type structures are used in many fields of civil, mechanical and marine engineering. Especially, Most ship structures are often in contact with inner or outer fluid, like ballast, fuel and stem tanks. Fatigue damages are sometimes observed in these tanks which seem to be caused by resonance with exciting force of engine and propeller. Vibration characteristics of these thin walled tanks in contact with fluid near engine and propeller are strongly affected by added mass of containing fluid. Therefore it is essentially important to estimate the added mass effect to predict vibration of the tanks. Many authors have studied vibration of rectangular tanks containing fluid. Few research on dynamic interaction among tank walls filled with fluid are reported in the vibration of rectangular tanks recently. In case of rectangular tanks, structural coupling between adjacent panels and effect of vibration modes of multiple panels on added mass of water have to be considered. In the previous report, a numerical analysis is performed for the coupling effect between panels of a tank on added mass of containing fluid, the effect of structural constraint between panels on each vibration mode for fluid region, and mode characteristics in accordance with changing breadth of the plates by using finite element method for plates and boundary element method for fluid region. In this paper, the coupling effect between panels of a tank on added mass of containing fluid, the effect of structural constraint between panels on each vibration mode for fluid region, and mode characteristics in accordance with changing length, thickness, and boundary condition of the plates are investigated numerically and discussed.

Optimum Tool Design in a Multi-stage Rectangular Cup Drawing and Ironing Process with the Large Aspect Ratio by the Finite Element Analysis (유한요소해석을 이용한 세장비가 큰 직사각컵 다단계 디프 드로잉-아이어닝 공정의 최적 금형설계)

  • Kim, Se-Ho;Kim, Seung-Ho;Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1077-1084
    • /
    • 2002
  • Optimum tool design is carried out fur a multi-stage rectangular cup deep-drawing and ironing process with the large aspect ratio. Finite element simulation is carried out to investigate deformation mechanisms with the initial design made by an expert. The analysis considers the deep drawing process with ironing for the thickness control in the cup wall. The analysis reveals that the difference of the drawing ratio within the cross section and the irregular contact condition produce non-uniform metal flow to cause wrinkling and severe extension. For remedy, the modification guideline is proposed in the design of the tool and the process. Analysis results confirm that the modified tool design not only improves the quality of a deep-drawn product but also reduces the possibility of failure. The numerical result shows fair coincidence with the experimental one. After tryouts of the tool shape, the rectangular cup has been produced in the transfer press.

The Comparison of Field Uniformity and SAR between TEM, Loop and Combined Elemented 16 Channel Transmit Arrays (TEM 형과 Loop 형의 전송소자를 이용한 16채널 3T Body 전송코일의 자장 균일도와 안전도 비교)

  • Ryu, Yeunchul;Kim, Young Beom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.404-408
    • /
    • 2014
  • In this research we evaluate the excitation homogeneity and SAR of three different Tx arrays after B1+ Shimming in the human body at 3T. Through the simulations, we compared the field properties that are standard deviation and mean value of transverse magnetization for 1) strip line TEM array, 2) rectangular loop array, 3) combined array of strip line element and rectangular loop and shown the utilities of B1+ shimming in human body model. After B1+ shimming, it is evaluated four different types of SAR for body mesh through whole body simulation; those are average, maximum 1-cell, maximum 1-gram, and maximum 10-gram SAR. It appears that in this particular comparison an array based on strip line elements can produce better homogeneity and lower SAR than an array of rectangular loops or an array of combined elements (strip line and loop). While many factors are considered in designing coils for production, it is hoped that methods and results like these will be used in the future to guide decisions and maximize benefit.