• Title/Summary/Keyword: rectangular cross-section

Search Result 304, Processing Time 0.024 seconds

Dynamic behavior of H-shape tall building subjected to wind loading computed by stochastic and CFD methodologies

  • Lucas Willian Aguiar Mattias;Joao Elias Abdalla Filho
    • Wind and Structures
    • /
    • v.37 no.3
    • /
    • pp.229-243
    • /
    • 2023
  • This study analyzes the response of a tall building with an H-shaped cross-section when subjected to wind loading generated by the same H-shape. As normative standards usually adopt regular geometries for determining the wind loading, this paper shows unpublished results which compares results of the dynamic response of H-shaped buildings with the response of simplified section buildings. Computational Fluid Dynamics (CFD) is employed to determine the steady wind load on the H-shaped building. The CFD models are validated by comparison with wind tunnel test data for the k-ε and k-ω models of turbulence. Transient wind loading is determined using the Synthetic Wind Method. A new methodology is presented that combines Stochastic and CFD methods. In addition, time-history dynamic structural analysis is performed using the HHT method for a period of 60 seconds on finite element models. First, the along-wind response is studied for wind speed variations. The wind speeds of 28, 36, 42, and 50 m/s at 0° case are considered. Subsequently, the dynamic response of the building is studied for wind loads at 0°, 45°, and 90° with a wind speed of 42 m/s, which approximates the point of resonance between gusts of wind and the structure. The response values associated with the first two directions for the H-shaped building are smaller than those for the R-shaped (Equivalent Rectangular Shape) one. However, the displacements of the H-shaped building associated with the latter wind load are larger.

Investigation on the effect of vibration frequency on vortex-induced vibrations by section model tests

  • Hua, X.G.;Chen, Z.Q.;Chen, W.;Niu, H.W.;Huang, Z.W.
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.349-361
    • /
    • 2015
  • Higher-mode vertical vortex-induced vibrations (VIV) have been observed on several steel box-girder suspension bridges where different vertical modes are selectively excited in turn with wind velocity in accordance with the Strouhal law. Understanding the relationship of VIV amplitudes for different modes of vibration is very important for wind-resistant design of long-span box-girder suspension bridges. In this study, the basic rectangular cross-section with side ratio of B/D=6 is used to investigate the effect of different modes on VIV amplitudes by section model tests. The section model is flexibly mounted in wind tunnel with a variety of spring constants for simulating different modes of vibration and the non-dimensional vertical amplitudes are determined as a function of reduced velocity U/fD. Two 'lock-in' ranges are observed at the same onset reduced velocities of approximately 4.8 and 9.4 for all cases. The second 'lock-in' range, which is induced by the conventional vortex shedding, consistently gives larger responses than the first one and the Sc-normalized maximum non-dimensional responses are almost the same for different spring constants. The first 'lock-in' range where the vibration frequency is approximately two times the vortex shedding frequency is probably a result of super-harmonic resonance or the "frequency demultiplication". The main conclusion drawn from the section model study, central to the higher-mode VIV of suspension bridges, is that the VIV amplitude for different modes is the same provided that the Sc number for these modes is identical.

Measurement of Heat Transfer and Friction Coefficients for Flow of Air in Noncircular Ducts At High Surface Temperatures. (공기유동에 대한 고온상태의 비원형 도과내에서의 열전달 및 압력강하의 측정)

  • 이동렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.552-562
    • /
    • 2001
  • Measurement of average of heat transfer and friction coefficients were obtained with air flowing through electrically heated ducts having square, rectangular(aspect ration, 5), and triangular cross section for range of surface temperature from $540^{\circ}$to $1780^{\circ}$ R and Reynolds number from 1000 to 330,000. The results indicates that the effect of heat flux on correlations of the average heat transfer and friction coefficients is similar to that obtained for circular tubes in previous investigation and was nearly eliminated by evaluating the physical properties and density of the air a film temperature halfway between the average surface and fluid bulk temperatures, With the Nusselt and Reynolds numbers on the hydraulic diameter of the ducts, the data for the noncircular ducts could be represented by the same equations obtained in the previous investigation for circular tubes. Correlation of the average difference between the surface corner and midwall temperatures for the square duct was in agreement with predicted values from a previous analysis. However, for the rectangular and triangular ducts, the measured corner temperature was greater by approximately 20 and 35 percent, respectively, than the values predicted by analysis.

  • PDF

Control of Wave Screening Performance of Floating Breakwaters (부유식 방파에의 파랑 차단 성능 제어)

  • 양우석;조원철;박우선
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.3
    • /
    • pp.230-236
    • /
    • 2001
  • The numerical investigations on the wave-screening characteristics of floating breakwaters are presented. The fluid motion is idealized as linearized, two dimensional potential flow. A finite element model is adopted to analyze the performance of floating breakwaters. Numerical experiments are carried out for two type floating breakwater. One is a conventional pontoon type breakwater with rectangular cross-section, and the other is a side float breakwater which consists of two rectangular shaped floats connected to each other by a frame. To improve the performance of the floating breakwaters, especially for long-period wave conditions, numerical experiments are carried out for the cases attaching the thin plates at the bottom of folats in the vertical direction.

  • PDF

Numerical Study on the Isothermal Flow Field abound Rectangular Cross Section Bluff Body (사각형 둔각물체 주위의 유동장 특성에 관한 수치적 연구)

  • Lee, Jung-Ran;Lee, Eui-Ju
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.35-41
    • /
    • 2012
  • The Numerical simulation was performed on the flow field around the two-dimensional rectangular bluff body in order to complement the previous experimental results of the bluff body stabilized flames [1]. For both fuel ejection configurations against an oxidizer stream, the flame stability was affected mainly by vortex structure and mixing field near bluff body. FDS(Fire Dynamic Simulator) based on the LES(Large Eddy Simulation) was employed to clarify the isothermal mixing characteristic and wake flow pattern around bluff body. The air used atmosphere and the fuel used methane. The result of counter flow configuration shows that the flow field depends on air velocity but the mixing field is influenced on the fuel velocity. At low fuel velocity the fuel mole fraction is below the flammable limit and hence the mixing is insufficient to react. Therefore, as the result, the flame formed at low fuel velocity is characterized by non-premixed flames. For the flow field of co-flow configuration, flame stability was affected by fuel velocity as well as air velocity. the vortex generated by fuel stream has counter rotating direction against the air stream. Therefore, the momentum ratio between air and fuel stream was important to decide the flame blow out limit, which is result in the characteristic of the partially premixed reacting wake near extinction.

Analysis of Acoustic Emission Signals from Fluid Leakage (유체 누출에서의 음향방출 신호분석)

  • 김용민;윤용구;김호철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.413-421
    • /
    • 1990
  • Acoustic emission signals due to leak from circular holes of 0.4, 1, 2 and 4mm diameter and rectangular slits of different geometry having the same cross section as 4mm diameter hole was studied both analytically and experimentally. Acoustic emission signals from a wide-band type transducer were transformed to digital signals through a digital oscilloscope, and $V_{rms}$ and frequency spectrum were obtained by processing digital signals. Relationships between acoustic parameters and fluid mechanical parameters were derived analytically. A quadrapole aerodynamic model was applied in the analysis of leak from the circular holes and $V_{rms}$ was found to be proportional to the root square of leak rate through the circular hole. A modified model based on dipole source mechanism and laminar equivalent diameter was applied in the analysis of leak signals from the rectangular slits. In the case of constant pressure, $V_{rms}$ increased as the laminar equivalent diameter of slit decreased. In the case of constant laminar equivalent diameter, however the result was similar to that for leak from the circular hole. The frequency spectra of leak signals shows the same frequency characteristics irrespective of the pressure difference.rence.

Structural Steel as Boundary Elements in Ductile Concrete Walls

  • Cho, Soon-Ho
    • KCI Concrete Journal
    • /
    • v.12 no.2
    • /
    • pp.73-84
    • /
    • 2000
  • A new form of construction utilizing structural steel as the boundary elements in ductile flexural concrete walls is proposed to solve the bar congestion problems in such a heavily reinforced region, while maintaining the ductility and energy absorption capacity comparable to their traditional form. Two wall specimens containing rectangular hollow structural sections (HSS) and channels at their ends respectively, and one companion standard reinforced concrete wall specimen with concentrated end reinforcement were constructed and tested under reversed cyclic loading to evaluate the construction process as well as the structural performance. Initially, all three specimens were chosen and detailed with some caution to have approximately the same flexural capacity without change of the original shape and dimension of a rectangular cross section correction. Analysis and comparison of test results indicated that the reversed cyclic responses of three walls showed similar hysteretic properties, but in those with steel boundaries, local buckling of the corresponding steel webs and flanges following significant yielding was a dominant factor to determine the hysteretic response. The monotonic and cyclic responses predicted based on a sectional approach was also presented and found to be in good agreement with measured results. Design recommendations considering local instability of the structural steel elements and the interaction between steel chords and a concrete web member in such a composite wall are presented.

  • PDF

Production of NO in Interacting Laminar Diffusion Flames (상호작용하의 층류 확산 화염에서 NO의 생성)

  • 전철균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.190-199
    • /
    • 1993
  • In order to find the effect of flame interaction on NO production, dual laminar diffusion flames issuing from two rectangular nozzles were investigated theoretically. Chemical equilibrium model and Zeldovich mechanism were used in numerical model. The effect of four major parameters on NO production were inspected. These parameters are nozzle spacing, Raynolds number, aspect ratio of nozle cross section and velocity of secondary flow. It is found that interaction of flames enhances production of n. It is also found that multiflames with large spacing, small aspect ratio and strong secondary flow product less n.

Boundary Conditions and Fire Behavior of Concrete Filled Tubular Composite Columns

  • Rodrigues, Joao Paulo C.;Correia, Antonio J.M.;Kodur, Venkatesh
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.4
    • /
    • pp.313-325
    • /
    • 2018
  • Concrete-filled steel tubular (CFST) members are commonly used as composite columns in modern construction. However, the current guidelines for members' fire design (EN1994-1-2) have been proved to be unsafe in case the relative slenderness is higher than 0.5. In addition, the simplified design methods of Eurocode 4 are limited to circular and square CFST columns, while in practice columns with rectangular and elliptical hollow sections are being increasingly used because of their architectural aesthetics. In the last years a large experimental research has been carried out at Coimbra University on the topic. They have been tested concrete filled circular, square, rectangular and elliptical hollow columns with restrained thermal elongation. Some parameters such as the slenderness, the type of cross-section geometry as well as the axial and rotational restraint of the surrounding structure to the column have been tested in order to evaluate their influence on the fire resistance of such columns. In this paper it is evaluated the influence of the boundary conditions (pin-ended and semi-rigid end-support conditions) on the behavior of the columns in case of fire. In these tests it could not be seen a marked effect of the tested boundary conditions but it is believed that the increasing of rotational stiffness increases the fire resistance of the columns.

Changes of Air Permeability and Moisture Absorption Capability of the Wood by Organosolv Pretreatment

  • Kang, Chun-Won;Jang, Eun-Suk;Jang, Sangsik;Kang, Ho-Yang;Li, Chengyuan;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.637-644
    • /
    • 2018
  • The air permeability of yellow poplar log cross section before and after organosolv pretreatment was investigated, and the moisture absorption of control and organosolv pretreated rectangular parallelepiped specimens was investigated in this study. It was revealed that the diameters of through pores were enlarged and the number of bigger pore was increased by the organosolv pretreatment. The air permeabilities of the cross sections of yellow poplar log were changed from 1.61 darcy to 23.30 darcy, but their weights were reduced by 5 percent. The equilibrium moisture content of control wood specimen at the exposed relative humidity were 5.9 % at 32 %, 9.7 % at 58 %, 14.8 % at 80.5 %, 19.7 % at 90 %, 25.7 % at 95 % and 29.9 % at 100%. The equilibrium moisture content of the specimens pretreated with the parameter of sulfuric acid catalyst of 0.5 % (w/w) were 19.5 % at 32 %, 29.3 % at 58 %, 39.6 % at 80.5 %, 59 % at 90 %, 111.3 % at 95 % and 111.3 % at 100 %, while those pretreated with the parameter of sulfuric acid catalyst of 1.0 % (w/w) were 17.4 % at 32 %, 23.9 % at 58 %, 27.7 % at 80.5 %, 40.6 % at 90 %, 68.8 % at 95 % and 110.0 % at 100 %. The moisture absorption of organosolv pretreated rectangular parallelepiped specimens was higher than that of control specimen.