• Title/Summary/Keyword: rectangular body

Search Result 222, Processing Time 0.033 seconds

Two-Dimensional Benard Natural Convection with a Rectangular Body (사각 물체가 존재하는 2차원 Benard 자연 대류)

  • Yoon, Kyung-Soo;Ha, Man-Yeong;Yoon, Hyun-Sik
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.282-289
    • /
    • 2000
  • Direct numerical solution for flow and heat transfer for Benard convection with a body is obtained using an accurate and efficient Fourier-Chebyshev collocation and multi-domain method. The flow and temperature fields are obtained fur different Rayleigh numbers and thermal boundary conditions of body. The body has adiabatic and constant temperature conditions. The existence of a body gives different flow and heat transfer fields in the system, compared to pure Benard convection. The flow and temperature fields are also affected by the thermal boundary condition of a body.

  • PDF

Determination of the Strouhal number based on the aerodynamic behavior of rectangular cylinders

  • Choi, Chang Koon;Kwon, Dae Kun
    • Wind and Structures
    • /
    • v.3 no.3
    • /
    • pp.209-220
    • /
    • 2000
  • The Strouhal number is an important nondimensional number which is explanatory of aerodynamic instability phenomena. It takes on the different characteristic constant value depending upon the cross-sectional shape of the body being enveloped by the flow. A number of investigations into this subject, especially on the drag test, surface pressure test and hot-wire test, have been carried out under the fixed state of the body in the past. However, almost no investigations concerning the determination of the St on wind-induced vibration of the body have been reported in the past even though the aerodynamic behavior of the body is very important because the construction of wind-sensitive structures is recently on the sharp increase. Based on a series of wind tunnel tests, this paper addresses a new method to determine the Strouhal number of rectangular cylinder in the uniform flow. The central idea of the proposed method is that the Strouhal number can be obtained directly by the aerodynamic behaviors of the body through wind-induced vibration test. The validity of proposed method is evaluated by comparing with the results obtained by previous studies in three B/Ds at attack angle $0^{\circ}$ and a square cylinder with various attack angles. The values and trends of the proposed Strouhal numbers are in good agreements with values of previous studies. And also, the Strouhal numbers of B/D=1.5 and 2.0 with various attack angles are obtained by the proposed method and verified by other method. This proposed method is as good as any other previous methods to obtain the Strouhal number.

Classification of Lower Body Shape of Middle-aged Women(Aged 40 to 59) (중년 여성의 하반신 체형 분류에 관한 연구)

  • Lee, Jung-Jin
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.16 no.4
    • /
    • pp.27-36
    • /
    • 2014
  • Lower body type of middle-aged(40 to 59) women was analyzed to develop body type-specific slacks. The analysis has four factors. Factor one is hip and leg type. Factor two is lower body height and length. Factor three is waist type, and factor four is hip length. By conducting a cluster analysis with scores of four factors, it came to have three types of classifications. Type one is a rectangular-shaped slim type. Women of this type have a high and lengthy lower body and middle-length hip. They have thin and small legs, their lower body is the longest, and the smallest with small curve among three types. Type two is the diamond-shaped obese type. They have a high and long lower body and legs are medium they are the most obese type. Type three is the large, trapezoidal-shaped, slightly overweight type. They have the longest and the biggest leg and hip. But the length and height of the lower body is the shortest among the three, and the hip is small. Legs are the thickest and shortest. The hip is big compared with the waist and is the longest. They have big hips and thick legs.

  • PDF

The Vibration of an Elastic Rectangular Plate in a Fluid (직사각형판(直四角形板)의 접수진동(接水振動))

  • Keuck-Chun,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.13 no.4
    • /
    • pp.1-10
    • /
    • 1976
  • It is a well-known phenomenon that, in the case of vibrations of an elastic body in a fluid such as water, the presence of the surrounding fluid has the effect of lowering the natural frequencies of the vibration as compared with those in air or vacuum on account of the increased inertia, i.e. added mass. In this report, defining the mass increase factor as the ratio of added mass to vibration mass of the body in air, the author investigated the mass increased factor of an elastic plate vibrating in the fluid. It is assumed that the edges of the plate are simply supported, and that the surrounding fluid is an infinite ideal one. For the problem formulation the elliptical cylindrical coordinate system is adopted, so that a rectangular plate may be represented by a sheet degenerated from an elliptical cylinder. By virtue of the coordinate system adopted, plates which are chordwisely finite and lengthwisely contineous could directly be treated, but plates which are chordwisely finite in both directions could not be treated directly. For the latter, hence, plates which are chordwisely finite and lengthwisely semi-finite are investigated as an appropriate approximation. Some examples of the mass increase factor are numerically calculated for the fundamental mode and modes of zero or one nodal line in each direction with the range of the aspect ratio from 1 to 10 or more.

  • PDF

Simulation of a Pulsating Air Pocket in a Sloshing Tank Using Unified Conservation Laws and HCIB Method (통합보존식 해석과 HCIB 법을 이용한 슬로싱 탱크 내부 갇힌 공기에 의한 압력 진동 모사)

  • Shin, Sangmook
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.5
    • /
    • pp.271-280
    • /
    • 2021
  • The code developed using a pressure-based method for unified conservation laws of incompressible/compressible fluids is expanded to handle moving or deforming body boundaries using the hybrid Cartesian/immersed boundary method. An instantaneous pressure field is calculated from a pressure Poisson equation for the whole fluid domain, including the compressible gas region. The polytropic gas is assumed for the compressible fluid so that the energy equation is decoupled. Immersed boundary nodes are identified based on edges crossing body boundaries. The velocity vector is reconstructed at the immersed boundary node using an interpolation along the assigned local normal line. The developed code is validated by comparing the time histories of pressure and wave elevation for sloshing in a rectangular and a membrane-type tank. The validated code is applied to simulate air cushion effects in a rectangular tank under sway motion. Time variations of pressure fields are analyzed in detail as the air pocket pulsates. It is shown that the contraction and expansion of the air pocket dominate the pressure loads on the wall of the tank. The present results are in good agreement with other experimental and computational results for the amplitude and the decay of the pressure oscillations measured at the pressure gauges.

Analysis of Virtual Fitting Effects of Cropped T-Shirts by Body Type for Women in Their 20s -Utilizing the Effects of Geometric Shapes- (20대 여성 체형별 크롭 티셔츠의 가상착의 효과 분석 -기하 형태 효과의 활용-)

  • Jinhua Han;Juhyun Ro
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.48 no.3
    • /
    • pp.467-484
    • /
    • 2024
  • This study aimed to enhance the design of cropped t-shirts to improve fit satisfaction among women in their 20s by tailoring the t-shirts to diverse body types. Body types were categorized using Size Korea's 8th Human Body Measurement Data, and statistical analysis was conducted based on the Statistical Package for the Social Sciences (version 26.0). This study also reviewed the literature on t-shirts and fit, the application of pattern and design improvements for different body types, verifying fit and size for each body type, and applying virtual fit effects using geometric forms. Frequency analysis and non-parametric verification were conducted using the Friedman test. The results showed that t-shirts with a horizontal rectangular shape was an effective design and that t-shirts with an inverted triangular structure also had a positive effect. In contrast, square t-shirts exhibited minimal effectiveness. These findings are expected to contribute to the consideration of customized shapes according to body type in t-shirt design. Research on customized virtual cropped t-shirts reflecting various body types can expand fit satisfaction studies, particularly amid the increasing trend of online shopping.

Design and fabrication of unimorph type piezoelectric vibrator (단층형 압전진동자의 설계 및 제작)

  • Jun, Ho-Ik;Kim, Jeong-Hwan;Ji, Seung-Hoon;Park, Tae-Gone
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1317-1318
    • /
    • 2007
  • On this paper, unimorph type piezoelectric vibrator made by attaching ceramic plates on rectangular elastic body, to find the basic characteristic of the actuators. In experiment, elastic body's displacement and resonance frequency were measured according to changes of ceramic's length and elastic body's length. Also, temperature changes were observed according to time. The displacement and resonance frequency were increased when the ceramic's length were increased. When elastic body's length was increased, the displacement was increased. Also, the temperature was increased according to time, but at some time it was saturated and the temperature was not increased any more.

  • PDF

Effects of corner cuts and angles of attack on the Strouhal number of rectangular cylinders

  • Choi, Chang-Koon;Kwon, Dae-Kun
    • Wind and Structures
    • /
    • v.6 no.2
    • /
    • pp.127-140
    • /
    • 2003
  • An investigation into the effect of corner cuts on the Strouhal number of rectangular cylinders with various dimensional ratios and various angles of attack is described. The Strouhal number given as a function of corner cut size is obtained directly from the aerodynamic behavior of the body in a uniform flow through a series of wind-induced vibration tests. For a quick verification of the validity of the Strouhal numbers obtained in this way, they are compared with the approximated the Strouhal numbers based on Shiraishi's early research. The test results show that the Strouhal number of the model with various corner cuts has a fluctuating trend as the angle of attack changes. For each cutting ratio as the angle of attack increases at each cutting ratio above $15^{\circ}$, the Strouhal number decreases gradually, and these trends are more evident for larger corner cut sizes. However, a certain corner cut size which is effective in reducing the wind-induced vibration can be identified by larger Strouhal numbers than those of other corner cut sizes. Three distinct characteristics of Strouhal number variation can be identified in three regions which are termed as Region I, II, and III based on the general trend of the test results. It is also found that the corner cut is effective in one region (Region-II) and less effective in another one (Region-III) when only the vortex-induced vibration occurs.

Design of Rectangular-Type Four-Finger Rehabilitation Robot for Stroke Patient (뇌졸중환자를 위한 직교형 4개 손가락 재활로봇 기구설계)

  • Kim, Hyeon-Min;Kim, Gab-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.473-480
    • /
    • 2013
  • This paper describes the design of a rectangular-type four-finger rehabilitation robot for flexibility rehabilitation of stroke patients' fingers and other patient's paralyzed fingers. The four-finger rehabilitation robot is composed of a body and each finger rehabilitation robot instrument. The four-finger rehabilitation robot could exercise four fingers (forefinger, middle finger ring finger and little finger) of patient for their rehabilitation. The four-finger rehabilitation robot instruments move according to the trace which spread out the patient's fingers and then turn them inward for the fingers' flexibility, while at the same time performing the force control with the reference forces for fingers' safety, simultaneously. A control characteristic test of the developed rectangular-type four-finger rehabilitation robot was carried out, and the results confirmed that the robot could be used for the flexibility rehabilitation exercise for the fingers of normal person and patients.

Resonant Frequencies in Rectangular Liquid Tanks with an Internal Body (내부물체를 갖는 사각형수조내 유체의 고유진동수)

  • 전영선;윤정방
    • Computational Structural Engineering
    • /
    • v.9 no.1
    • /
    • pp.55-64
    • /
    • 1996
  • Sloshing frequencies of the fluid in rectangular tanks with a bottom-mounted rectangular block are determined by linear water wave theory. Velocity potential is decomposed into those for the wall-induced waves, and the reflected, transmitted, and scattered waves by the block. The reflection and transmission coefficients are determined using the continuity conditions of mass flux and energy flux on the common vertical boundaries of the fluid regions, and the boundary conditions on the both sides of the block. The analysis results indicate that the sloshing frequencies reduce, as the block becomes tall and vade and as the block moves toward the center. The variations of the sloshing frequencies due to the block are found to be more sensitive in broad thanks than is tall tanks.

  • PDF