• Title/Summary/Keyword: rectangular beams

Search Result 213, Processing Time 0.024 seconds

Parametric analysis and torsion design charts for axially restrained RC beams

  • Bernardo, Luis F.A.;Taborda, Catia S.B.;Gama, Jorge M.R.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.1
    • /
    • pp.1-27
    • /
    • 2015
  • This article presents a theoretical parametric analysis on the ultimate torsional behaviour of axially restrained reinforced concrete (RC) beams. This analysis is performed by using a computing procedure based on a modification of the Variable Angle Truss Model. This computing procedure was previously developed to account for the influence of the longitudinal compressive stress state due to the axial restraint conditions provided by the connections of the beams to other structural members. The presented parametric study aims to check the influence of some important variable studies, namely: torsional reinforcement ratio, compressive concrete strength and axial restraint level. From the results of this parametric study, nonlinear regression analyses are performed and some design charts are proposed. Such charts allow to correct the resistance torque of RC beams (rectangular sections with small height to width ratios) to account for the favorable influence of the axial restraint.

Reliability analysis of tested steel I-beams with web openings

  • Bayramoglu, Guliz
    • Structural Engineering and Mechanics
    • /
    • v.41 no.5
    • /
    • pp.575-589
    • /
    • 2012
  • This paper presents a reliability analysis of steel I-beams with rectangular web openings, based on a combination of the common probabilistic reliability methods, such as RSM, FORM and SORM and using data obtained from experimental tests performed at the Istanbul Technical University. A procedure is proposed to obtain the optimum design load that can be applied to this type of structural members, by taking into account specified target values of reliability indices for ultimate and serviceability limit states. The goal of the paper is to present an algorithm to obtain more realistic and economical design of beams and to demonstrate that it can be applied efficiently to steel I-beams with web openings. Finally, a sensitivity analysis is performed allowing to ranking the random variables according to their importance in the reliability analysis.

An Experimental Study on Reinforcing Effectiveness of H-Shaped Steel Beams with Rectangular Web Openings (다공 H 형강보의 보강효과에 관한 실험적 연구)

  • Kim, Jin-Mu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.213-222
    • /
    • 1999
  • On condition that opening located at high shear strength position in H-shaped steel beams with web opening, beams are structurally to be frailed so necessity and efficiency of vertical reinforcement to add horizontal reinforcement already published ahead study. Up to the present study of web opening beams, limited one opening which located in comparatively small shear strength position. But frequently opening area is enlargement by necessity, so width of opening is larger by limit of depth or increasing number of opening. This study carry out experiment to make efficient reinforcing method about strength and deformation of steel beams with web openings. Parameters of this study are openings location, ratio of opening width within opening height and various reinforcing types.

  • PDF

Shear strength of full-scale steel fibre-reinforced concrete beams without stirrups

  • Spinella, Nino
    • Computers and Concrete
    • /
    • v.11 no.5
    • /
    • pp.365-382
    • /
    • 2013
  • Although shear reinforcement in beams typically consists of steel bars bent in the form of stirrups or hoops, the addition of deformed steel fibres to the concrete has been shown to enhance shear resistance and ductility in reinforced concrete beams. This paper presents a model that can be used to predict the shear strength of fibrous concrete rectangular members without stirrups. The model is an extension of the plasticity-based crack sliding model originally developed for plain concrete beams. The crack sliding model has been improved in order to take into account several aspects: the arch effect for deep beams, the post-cracking tensile strength of steel fibre reinforced concrete and its ability to control sliding along shear cracks, and the mitigation of the shear size effect due to presence of fibres. The results obtained by the model have been validated by a large set of experimental tests taken from literature, compared with several models proposed in literature, and numerical analyses are carried out showing the influence of fibres on the beam failure mode.

Strength assessment of RC deep beams and corbels

  • Adrija, D.;Geevar, Indu;Menon, Devdas;Prasad, Meher
    • Structural Engineering and Mechanics
    • /
    • v.77 no.2
    • /
    • pp.273-291
    • /
    • 2021
  • The strut-and-tie method (STM) has been widely accepted and used as a rational approach for the design of disturbed regions ('D' regions) of reinforced concrete members such as in corbels and deep beams, where traditional flexure theory does not apply. This paper evaluates the applicability of the equilibrium based STM in strength predictions of deep beams (with rectangular and circular cross-section) and corbels using the available experiments in literature. STM is found to give fairly good results for corbel and deep beams. The failure modes of these deep members are also studied, and an optimum amount of distribution reinforcement is suggested to eliminate the premature diagonal splitting failure. A comparison with existing empirical and semi empirical methods also show that STM gives more reliable results. The nonlinear finite element analysis (NLFEA) of 50 deep beams and 20 corbels could capture the complete behaviour of deep members including crack pattern, failure load and failure load accurately.

Torsional strengthening of RC beams using stainless steel wire mesh -Experimental and numerical study

  • Patel, Paresh V.;Raiyani, Sunil D.;Shah, Paurin J.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.4
    • /
    • pp.391-401
    • /
    • 2018
  • Locally available Stainless Steel Wire Mesh (SSWM) bonded on a concrete surface with an epoxy resin is explored as an alternative method for the torsional strengthening of Reinforced Concrete (RC) beam in the present study. An experiment is conducted to understand the behavior of RC beams strengthened with a different configuration of SSWM wrapping subjected to pure torsion. The experimental investigation comprises of testing fourteen RC beams with cross section of $150mm{\times}150mm$ and length 1300 mm. The beams are reinforced with 4-10 mm diameter longitudinal bars and 2 leg-8 mm diameter stirrups at 150 mm c/c. Two beams without SSWM strengthening are used as control specimens and twelve beams are externally strengthened by six different SSWM wrapping configurations. The torsional moment and twist at first crack and at an ultimate stage as well as torque-twist behavior of SSWM strengthened specimens are compared with control specimens. Also the failure modes of the beams are observed. The rectangular beams strengthened with corner and diagonal strip wrapping configuration exhibited better enhancement in torsional capacity compared to other wrapping configurations. The numerical simulation of SSWM strengthened RC beam under pure torsion is carried out using finite element based software ABAQUS. Results of nonlinear finite element analysis are found in good agreement with experimental results.

Experimental and numerical investigations on reinforcement arrangements in RC deep beams

  • Husem, Metin;Yilmaz, Mehmet;Cosgun, Suleyman I.
    • Advances in concrete construction
    • /
    • v.13 no.3
    • /
    • pp.243-254
    • /
    • 2022
  • Reinforced concrete (RC) deep beams are critical structural elements used in offshore pile caps, rectangular cross-section water tanks, silo structures, transfer beams in high-rise buildings, and bent caps. As a result of the low shear span ratio to effective depth (a/d) in deep beams, arch action occurs, which leads to shear failure. Several studies have been carried out to improve the shear resistance of RC deep beams and avoid brittle fracture behavior in recent years. This study was performed to investigate the behavior of RC deep beams numerically and experimentally with different reinforcement arrangements. Deep beams with four different reinforcement arrangements were produced and tested under monotonic static loading in the study's scope. The horizontal and vertical shear reinforcement members were changed in the test specimens to obtain the effects of different reinforcement arrangements. However, the rebars used for tension and the vertical shear reinforcement ratio were constant. In addition, the behavior of each deep beam was obtained numerically with commercial finite element analysis (FEA) software ABAQUS, and the findings were compared with the experimental results. The results showed that the reinforcements placed diagonally significantly increased the load-carrying and energy absorption capacities of RC deep beams. Moreover, an apparent plastic plateau was seen in the load-displacement curves of these test specimens in question (DE-2 and DE-3). This finding also indicated that diagonally located reinforcements improve displacement ductility. Also, the numerical results showed that the FEM method could be used to accurately predict RC deep beams'behavior with different reinforcement arrangements.

The Calculation Model of Electron Output for the Cut-out Fields, in Consideration of Shielding Area. (차폐면적의 변화에 따르는 전자선 출력인자의 변화)

  • 이병용;김정만;김정화;권경태;이두현;이강현;최은경;장혜숙
    • Progress in Medical Physics
    • /
    • v.1 no.1
    • /
    • pp.61-68
    • /
    • 1990
  • We have designed the calculation model(AMC method) of electron output for the cut-out fieldsand studied the influence of shielding block size. The output of electron was measured in the water phantom at dmax, for 20 $\times$ 20cm$^2$ cone size electron beams from CL/1800 linear accelerator(Varian, USA), Which generates the energy of 6, 9, 12, 15 and 18MeV electron beams. The shielding blocks were rectangular or squre shaped, low melting point alloy. We can predict the output from the arbitrarily rectangular shaped block within 1% error. by using the AMC method, which considers the contribution of the collimator(block) scatter and the phantom scatter.

  • PDF

The Theory of Thin-Walled Curved Rectangular Box Beams Under Torsion and Out-of-Plane Bending (비틀림과 평면외 굽힘을 받는 직사각단면 곡선 박판보 이론)

  • Kim, Yun-Yeong;Kim, Yeong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2637-2645
    • /
    • 2000
  • We propose a new one-dimensional theory for thin-walled curved box beams having rectangular cross sections, in which torsional, out-of-plane bending, warping and distortional deformations are coupled. The major difference between the present theory and existing theories lies in that the present theory takes into account additional distortion as well as warping. To verify the present theory, a standard finite element based on the present theory is developed and used for numerical analysis. A couple of numerical examples indeed confirm that the consideration of warping and distortional deformations is very important.

Stability Analysis of Stiffened Thin Plates Using Energy Method (에너지법을 이용한 보강된 박판의 안정성해석)

  • KIM, Moon Young;MIN, Byoung Cheol
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.3 s.28
    • /
    • pp.55-65
    • /
    • 1996
  • For stability analysis of stifened rectangular thin plates with various boundary conditions, Ritz method is presented. An energy method is especially useful in those cases where a rigorous solution of the diferential eqution is unknown or where we have a plate reinforced by stiffeners and it is required to find only an approximate value of the critical load. The strain energy due to the plate bending and the work done by the in-plane forces are taken into account in order to apply the principle of the minimum potential energy. The buckling mode shapes of flexural beams with various boundary conditions are derived, and shape functions consistent with the given boundary conditions in the two orthogonal directions are chosen from those displacement functions of beams. The matrix equations for stability of stiffened rectangular thin plates are determined from the stationary condition of the total potential energy. Numerical example for stability behaviors of horizontally and vertically stiffened plates subjected to uniform compression, bending and shear loadings are presented and the obtained results are compared with other researchers' results.

  • PDF