• Title/Summary/Keyword: recovery of metals

Search Result 331, Processing Time 0.028 seconds

Recovery of Metals from Printed Circuit Board Scraps by Shape Sorting Method (형상분리법에 의한 폐 PCBs로부터 유가금속의 회수연구)

  • Lee, Jae-Chun;Lee, Min-Yong;Shigehisa Endoh;Shin, Hee-Young
    • Resources Recycling
    • /
    • v.5 no.3
    • /
    • pp.37-43
    • /
    • 1996
  • The recovery of metals from printed circuit board(PCBs) scraps was investigated by utilizing a shape sorting method.After all electronic parts mounted on the board were removed. PCBs were pulverized to particles smaller than 1 mm by aswing hammer type impact mill in order to liberate metal components. Metals were separated from nonmetalliccomponents by an inclined vibrating plate (IVP). The metal separation efficiency was measured as a function of vihrationintensity and inclined angle. The maximum efficiency was obtained when IVP was operated at the vibration intensity(Kv)of 1.40 and the inclined angle of 10". The grade of the metal components was recovered from PCBs exceeding 90% byusing IVP.0% by using IVP.

  • PDF

A Comparison of Efficiency of Two Pretreatment Methods for Extracting Heavy Metals from Welding Fume Samples (용접흄내 중금속분석시 전처리 방법별 효율비교)

  • Son, Dooyoung;Kim, Hyunwook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.9 no.2
    • /
    • pp.135-144
    • /
    • 1999
  • The purposes of this study were to survey types of pretreatment methods adopted by industrial hygiene laboratories in Korea for extracting heavy metals in welding fume samples and to compare performances of two pretreatment methods, the acid extraction and the microwave digestion, in extracting heavy metals contained in the real workplace samples from various welding jobs including arc, argon, and carbon dioxide. A total of 25 analytical chemists in the industrial hygiene laboratories participating the quality control program directed by the Korea Industrial Safety Corporation were interviewed by telephone. For the purpose of comparing performance of extracting heavy metals from real workplace samples, a total of 53 welders from 21 workplaces located in Anyang, Uiwang, and Kunpo areas were sampled from the period of March 22, 1999 to April 20, 1999. It was found that the most frequently adopted method for samples from the quality control program was the acid extraction method(40%) followed by the NIOSH 7300 method(36%). The NIOSH method, however, was the dominant method(36%) for samples from workplace followed by the acid extraction method(28%). In this study, two extraction methods, the acid extraction and the microwave digestion, were compared in terms of recovery rate, accuracy, and precision for both manganese and chromium. Both methods produced comparable results for the samples prepared for the quality control program. In contrast, concentrations of two heavy metals determined from real workplace samples pretreated with the microwave digestion method were statis tically significantly higher, manganese(166%) and chromium (200%), than those of utilizing the acid extraction method. These findings were consistent regardless of types of welding techniques used. The results of this study clearly show the importance of verifying the analytical performances of extraction methods for heavy metals not only for the samples from the quality control program but also from the real world samples collected from welding jobs.

  • PDF

Monitoring of heavy metals, bisphenol A and phenol migrated from food packages for delivery

  • Cho, Hyunnho;Yun, Ho Cheol;Lee, Ji Yoon;Kwon, Hyeon Jeong;Jeong, Eun Jung;Kim, Da Young;Lee, Seong Ju;Kang, Jung Mi
    • Analytical Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.15-23
    • /
    • 2022
  • Food delivery is gaining popularity due to changes in lifestyle and dietary patterns. However, packages used to delivery food may contain contaminants including heavy metals, or additives added during manufacturing process which may migrate into food during processing and transportation. In this study, a total of 58 food packages for delivery were collected and tested for migration of heavy metals (lead, cadmium and arsenic), bisphenol A and phenol into food simulants. The method was validated by evaluating linearity of calibration curve, limit of detection, limit of quantification, recovery and precision. Result of heavy metal migration showed that lead was the most frequently migrated metal and the highest concentration was detected in a polypropylene sample. Although there are no specific migration limits for bisphenol A and phenol in packaging materials tested in this study, migrations of bisphenol A and phenol were detected in some packages. This may due to contamination or additives added during manufacture of packages. Risk (%) was calculated to analyze the risk associated with the migration of heavy metals, bisphenol A and phenol, and was always below 1 %. These results showed that food packages for delivery are safe in terms of heavy metals, bisphenol A and phenol migration.

Study on Reaction Behavior of Mg-FeB Phase for Rare Earth Elements Recovery from End-of-life Magnet

  • Sangmin Park;Dae-Kyeom Kim;Rongyu Liu;Jaeyun Jeong;Taek-Soo Kim;Myungsuk Song
    • Journal of Powder Materials
    • /
    • v.30 no.2
    • /
    • pp.101-106
    • /
    • 2023
  • Liquid metal extraction (LME), a pyrometallurgical recycling method, is popular owing to its negligible environmental impact. LME mainly targets rare-earth permanent magnets having several rare-earth elements. Mg is used as a solvent metal for LME because of its selective and eminent reactivity with rare-earth elements in magnets. Several studies concerning the formation of Dy-Fe intermetallic compounds and their effects on LME using Mg exist. However, methods for reducing these compounds are unavailable. Fe reacts more strongly with B than with Dy; B addition can be a reducing method for Dy-Fe intermetallic compounds owing to the formation of Fe2B, which takes Fe from Dy-Fe intermetallic compounds. The FeB alloy is an adequate additive for the decomposition of Fe2B. To accomplish the former process, Mg must convey B to a permanent magnet during the decomposition of the FeB alloy. Here, the effect of Mg on the transfer of B from FeB to permanent magnet is observed through microstructural and phase analyses. Through microstructural and phase analysis, it is confirmed that FeB is converted to Fe2B upon B transfer, owing to Mg. Finally, the transfer effect of Mg is confirmed, and the possibility of reducing Dy-Fe intermetallic compounds during LME is suggested.

Evaluation of Some Rare Metals and Rare Earth Metals Contained in Coal Ash of Coal-fired Power Plants in Korea (국내 석탄화력발전소 석탄회 중 희유금속 가치 평가)

  • Park, Seok-Un;Kim, Jae-Kwan;Seo, Yeon-Seok;Hong, Jun-Seok;Lee, Hyoung-Beom;Lee, Hyun-Dong
    • Resources Recycling
    • /
    • v.24 no.4
    • /
    • pp.67-75
    • /
    • 2015
  • The content distributions of some rare metals and rare earthe metals in coal ash (fly ash, bottom ash and pond ash) and leachate from coal-fired power plants were investigated. In case of Yttrium (Y) and Neodymium (Nd) which were strategic critical elements, their contents were ranged from about 23 ~ 75 mg/kg and it is shown they are worth to be developed for the recovery and separation method. Considering the annual amount of fly ash and bottom ash and pond ash, coal-fired power plants have great value of about 1,670 billion KRW and it is regards they are worthy as urban mines.

Study on Adsorption and Recovery of Heavy Metal Ions, Cd(II) and Pb(II), by Chitin (키틴에 의한 중금속 Cd(II), Pb(II)이온의 흡착 및 회수에 관한 연구)

  • Kim, Eun-Kyung;Cho, Young-Koo;Kwon, Young-Du;Park, Mi-A;Kim, Han-Soo;Park, Kwang-Ha
    • Analytical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.163-171
    • /
    • 2002
  • The adsorption characteristics of Cd(II) and Pb(II) ions has been studied by using chitin as an adsorbent. The pure chitin was obtained from the extraction of red-crab shell dumped by fish factory. Adsorption kinetics of Cd(II) and Pb(II) ions on the chitin reached at the maximum adsorption within two minutes. Adsorbed amounts of heavy metals were pH 7.0>10.5>3.5 in the following order. Adsorption ratio by chitin was 21${\sim}$99% for Cd(II) ion and 24${\sim}$95% for Pb(II) ion. Recovery ratio of Cd(II) ion on the chitin was 22${\sim}$53%, and that of Pb(II) ion was 22${\sim}$73%. The adsorption behavior of these heavy metals was explained well by Freundlich adsorption isotherm.

A Study on the Recovery of Nitric Acid from Spent Nitric Etching Solutions by Solvent Extraction (질산 Etching 폐액으로부터 용매추출법에 의한 질산의 회수에 관한 연구)

  • 안재우
    • Resources Recycling
    • /
    • v.7 no.5
    • /
    • pp.46-51
    • /
    • 1998
  • A study has been on the recovery of nitric acid and valuable metals such as Fe, Cu, Sn, Pb, from spent nitric etching solutions. The effects of extractant of extractant type, concentrations, phase raios and selectivity from Fe, Cu, Sn, Pb on nitric acid extraction were studied. The results showed that TBP as an extractant for recovering of nitric acid was more effective than Alamine336, and the optimal concentration of TBP was found to be 60~70% of organic phase. Also, the nitric acid were only extracted by TBP from the spent etching solutions and the heavy metals such as Fe, Cu, Sn, Pb were not extracted above 0.1N nitric acid in spent etching solutions, From the analysis of McCabe-Thiele diagram, the extraction of 95% nitric acid is attained at a ratio of O/A=3 with five stages by 60% TBP and the stripping of 98% nitric acid from 80 g/l nitric acid in organic phase is attained at a ratio of O/A=1 with four stages by distilled water.

  • PDF

Development of Technology for Recovering Valuable Metals in Detoxified Waste Asbestos-Containing Waste (무해화된 폐석면에 함유된 유가금속 회수 기술 개발)

  • Kim, Dong Nyeon;Yang, Dong Hyeon;Kim, Seok Chan
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.438-442
    • /
    • 2020
  • Studies on the recovery conditions and optimization process for valuable metal recovery through chemical treatment from detoxified asbestos-containing waste composed of calcium silicate, larnite, merwinite, and akermanite were conducted. The main components, Si, Ca, and Mg, of detoxified asbestos-containing waste (DACW) were separated and recovered in the form of SiO2, CaSO4, and Mg(OH)2 compounds, respectively. Each separated component was confirmed through X-ray diffraction (XRD) and inductively coupled plasma spectrometer (ICP) analysis. The recovery conditions for each component were first treating them with an acid to separate SiO2 and subsequently with H2SO4 to recover Ca in the form of sulfate, CaSO4. The remaining Mg was recovered by precipitation with Mg(OH)2 under strong basic conditions. This study suggested that it is possible to convert existing treatment process of asbestos waste by landfill through recovering the components into a resource-recycling green technology.

A basic study on the recovery of Ni, Cu, Fe, Zn ions from wastewater with the spent catalyst (폐산화철촉매에 의한 폐수중 Ni, Cu, Fe, Zn이온 회수에 관한 기초연구)

  • Lee Hyo Sook;Oh Yeung Soon;Lee Woo Chul
    • Resources Recycling
    • /
    • v.13 no.2
    • /
    • pp.3-8
    • /
    • 2004
  • A basic study on the recovery of heavy metals such as Zn, Ni, Cu and Fe ions from wastewater was carried out with the spent iron oxide catalyst, which was used in the Styrene Monomer(SM) production company. The heavy metals could be recovered more than 98% with the spent iron oxide catalyst. The alkaline components of the spent catalyst could be precipitated the metal ions of the wastewater as metal hydroxides at the higher pH 10.6 in Ni, pH 8.0 in Cu, pH 6.5 in Fe, pH 8.5 in Zn. But the metal ions are adsorbed physically on the surface of the spent catalyst in the range of the pH of the metal hydroxides and pH 3.0, which is the isoelectric point of the iron oxide catalyst.

A study on recovery of Platinum Group Metals(PGMs) from spent automobile catalyst by melting technology (용융기술(熔融技術)을 이용(利用)한 자동차폐촉매(自動車廢觸媒)에서의 백금족(白金族) 금속(金屬) 회수(回收) 연구(硏究))

  • Park, Hyun-Seo
    • Resources Recycling
    • /
    • v.20 no.2
    • /
    • pp.74-81
    • /
    • 2011
  • The dry method and wet method are currently used for the recovery of platinum group metals (Pt, Rh, Pd) contained in spent automobile catalysts. The study herein aims to identify the melting condition and optimum collector metal in accordance with a comparison of each concentration change in melting waste catalysts, using Fe and Cu in a basic experiment to recover waste catalysts through application of the dry melting method. As a summarized result of the experiment herein, it was determined to be more advantageous to use Fe as a parent material rather than Cu from the aspect of recollection rate, and the concentration change rate of platinum group metals within slag was greatly enhanced at $1,600^{\circ}C$ melting condition rather than at $1,500^{\circ}C$ in terms of melting processing temperature. The mean concentration of platinum group metals - Rh, Pd and Pt - within slag after a melting process at $1,600^{\circ}C$ were 6.21 ppm, 5.98 ppm and 6.97 ppm. The Rh and Pd were 50.58% and 55.31% respectively greater than the concentration change rate of platinum group metals in slag at a melting temperature of $1,500^{\circ}C$. However, since the initial concentration of Pt within the waste catalysts was 12.9 ppm, is relatively low, it was difficult to compare concentration change rates after the melting process.