• Title/Summary/Keyword: recovery of iron

Search Result 201, Processing Time 0.025 seconds

Iron Oxide-Carbon Nanotube Composite for NH3 Detection (산화철-탄소나노튜브 나노복합체의 암모니아 가스센서 응용)

  • Lee, Hyundong;Kim, Dahye;Ko, DaAe;Kim, Dojin;Kim, Hyojin
    • Korean Journal of Materials Research
    • /
    • v.26 no.4
    • /
    • pp.187-193
    • /
    • 2016
  • Fabrication of iron oxide/carbon nanotube composite structures for detection of ammonia gas at room temperature is reported. The iron oxide/carbon nanotube composite structures are fabricated by in situ co-arc-discharge method using a graphite source with varying numbers of iron wires inserted. The composite structures reveal higher response signals at room temperature than at high temperatures. As the number of iron wires inserted increased, the volume of carbon nanotubes and iron nanoparticles produced increased. The oxidation condition of the composite structures varied the carbon nanotube/iron oxide ratio in the structure and, consequently, the resistance of the structures and, finally, the ammonia gas sensing performance. The highest sensor performance was realized with $500^{\circ}C/2h$ oxidation heat-treatment condition, in which most of the carbon nanotubes were removed from the composite and iron oxide played the main role of ammonia sensing. The response signal level was 62% at room temperature. We also found that UV irradiation enhances the sensing response with reduced recovery time.

Comparison of Analytical Methods for α-Quartz by FTIR and XRD (FTIR과 XRD를 이용한 α-Quartz 분석법 비교)

  • Kim, Boo-Wook;Lee, Jong-Seong;Choi, Byung-Soon
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.2
    • /
    • pp.130-142
    • /
    • 2009
  • This study compared FTIR with XRD method for the analysis of quartz by % recovery, coefficient of variation (CV) and influence of the interference. the results were as the following. 1. In FTIR method, the coefficient of determination ($r^2$) was 0.9998 in a calibration curve of $695\;cm^{-1}$, and the limit of detection was $4.9{\mu}g/sample$. 2. The highest recovery was $799\;cm^{-1}$ (98.2%). 3. The CVpooled of the FTIR method was approximately 10% in three wave numbers. 4. The analysis of qualitative and quantitative for quartz is difficult with mixed cristobalite and iron oxide. 5. In XRD method with rotating sample holder and LynxEye detector, the coefficient of determination was 0.9996 in a calibration curve, and the limit of detection was $5.9{\mu}g/sample$. 6. The recovery and CV pooled were 104.3%, and 11 %, respectively. 7. In muffle furnace ashing, the quartz weight decreased to 34% when the maximum weight of the iron oxide was more than eight times. In conclusion, the accuracy (% recovery) and precision (CV) of FTIR and XRD method for analyzing $\alpha$-quartz were similar. FTIR method was a disadvantage for sample matrix because it indicates possibility of interference. However, XRD method distinguished specific crystalline forms of silica, and the majority of silicate minerals. In addition, XRD method recommend filter dissolution to pretreatment method.

An Efficiency Evaluation of Iron Concentrates Flotation Using Rhamnolipid Biosurfactant as a Frothing Reagent

  • Khoshdast, Hamid;Sam, Abbas
    • Environmental Engineering Research
    • /
    • v.17 no.1
    • /
    • pp.9-15
    • /
    • 2012
  • The effect of a rhamnolipid biosurfactant produced by a Pseudomonas aeruginosa MA01 strain on desulfurization of iron concentrates was studied. Surface tension measurement and frothing characterization indicated better surface activity and frothability of rhamnolipid compared to methyl isobutyl carbinol (MIBC) as an operating frother. Reverse flotation tests using rhamnolipid either as a sole frother or mixed with MIBC, showed that the desulfurization process is more efficient at pH 4.5 and high concentration of rhamnolipid in the presence of MIBC. However, under these conditions water recovery decreased due to the change in rhamnolipid aggregates morphology. Results from the present study seemed promising to introduce the biosurfactant from Pseudomonas aeruginosa as a new frother.

The High Temperature Deformation Behavior of Ductile Cast Iron (구상 흑연 주철의 고온 변형 거동)

  • Yoo, Wee-Do;Na, Young-Sang;Lee, Jong-Hoon
    • Journal of Korea Foundry Society
    • /
    • v.22 no.1
    • /
    • pp.11-16
    • /
    • 2002
  • Hot deformation behavior of GCD-50 cast iron has been investigated by employing the compressive test. Phenomenological deformation behaviors, which were modeled based on the dynamic materials model and the kinetic model, have been correlated with the microstructural change taken place during compression. Microstructural investigation revealed that the adiabatic shear band caused by the locallized deformation was taken place in low temperature and high strain rate. On the other hand, the wavy and curved grain boundaries, which repersent the occurrence of dynamic microstructure change such as dynamic recovery and dynamic recrystallization, were observed in high temperature and low strain rate. Deformation model based on hyperbolic sine law has also been suggested.

Effect of Recovery on Dynamic Strength after Isotonic or Isometric Cool-Down Exercise (등장성 혹은 등척성 정리운동이 동적근력회복에 미치는 효과)

  • Kim, Mun-Jung;Shin, Sung-Nyu;Im, Eun-Kyo;Yi, Chung-Hwi
    • Physical Therapy Korea
    • /
    • v.1 no.1
    • /
    • pp.67-74
    • /
    • 1994
  • Our purpose of this study was to determine the most effective cool-down exercise. The recovery times of dynamic strength after isometric and isotonic cool-down exercise were measured immediately post cool-down exercise, 30 seconds later and 60 seconds later in 30 normal, healthy men from 19 to 29 years, using dumbells(Model, Iron). The recovery time of dynamic strength had a significant positive correlation with isotonic and isometric cool-down exercise using the Chi-square method (p<0.01). Sources of significant differences were determined by the Wilcoxon signed-ranks test (p<0.01). The isometric cool-down exercise significantly shortened the recovery time of dynamic strength. We suggest that the isometric cool-down exercise may be more effective than isotonic cool-down exercise in shortening the recovery time of dynamic strength.

  • PDF

A Longitudinal Study on Maternal Iron and Folate Status During and After Pregnancy in Korean Women (임신기간과 분만 후 모체의 철 및 엽산 영양상태의 종단적 변화)

  • 이종임;임현숙
    • Korean Journal of Community Nutrition
    • /
    • v.6 no.2
    • /
    • pp.182-191
    • /
    • 2001
  • Anemia in women during pregnancy and after delivery has been known to affect the mother, the fetus, and the infant's growth and health status. Studies examining, changes in iron and folate status associated with anemia during pregnancy and during pregnancy, and those supplements are stopped after postpartum. However, the effects of those have not been clearly determined in pregnant and lactating Korea women. Therefore, this study was performed to determine the changes in maternal iron and folate status during pregnancy and six months after delivery longitudinally in six pregnant women who consumed supplements from 20 wk to delivery. We concluded that the iron status deteriorated during pregnancy and especially was weak in the third trimester, but had a tendency to recovery after delivery. On the other hand, the folate status deteriorated in the first and second trimester and was good in the third trimester, but had a tendency to decrease after delivery. These results suggested that the iron status was not improved despite consuming total iron supplements of 50 mg/day through diets and supplements during the second half of the pregnancy. On the other hand, the folate status improved at the end of pregnancy by consuming folate supplements of a total of 800 mg/day through diets and supplements. However, folate status was poor in the first half of the pregnancy, and the tendency of folate status to decrease during postpartum was advanced. At the point in which iron and therefore supplementation is essential. However, the effects of supplement intake time and intake dosage need to be verified and the nutritional status changes of postpartum women should be carefully monitored.

  • PDF

Removal of arsenic from aqueous phase using magnetized activated carbon and magnetic separation

  • Kwon, H.W.;Shin, T.C.;Kim, J.J.;Ha, D.W.;Kim, Min Gyu;Kim, Young-Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.2
    • /
    • pp.1-5
    • /
    • 2018
  • Arsenic (As) is one of the elements having most harmful impact on the human health. Arsenic is a known carcinogen and arsenic contamination of drinking water is affecting on humans in many regions of the world. Adsorption has been proved most preferable technique for the removal of arsenic. Many researchers have studied various types of solid materials as arsenic adsorbent, and iron oxide and its modified forms are considered as the most effective adsorbent in terms of adsorption capacity, recovery, and economics. However, most of all iron oxides have small surface area in comparing with common adsorbents in environmental application such as activated carbon but the activated carbon has weak sorption affinity for arsenic. We have used an activated carbon as base adsorbent and iron oxide coating on the activated carbon as high affinity sorption sites and giving magnetic attraction ability. In this study, adsorption properties of arsenic and magnetic separation efficiency of the magnetized activated carbon (MAC) were evaluated with variable iron oxide content. As the iron oxide content of the MAC increased, adsorption capacity has also gradually increased up to a point where clogging by iron oxide in the pore of activated carbon compensate the increased sorption capacity. The increase of iron oxide content of the MAC also affected magnetic properties, which resulted in greater magnetic separation efficiency. Current results show that magnetically modified common adsorbent can be an efficiency improved adsorbent and a feasible environmental process if it is combined with the magnetic separation.

A Study on the Magnetic Separation of Magnetite from Spent Iron-oxide Catalyst (폐 산화철촉매로부터 마그네타이트의 자력선별에 관한 연구)

  • 현종영;이효숙;이우철;채영배
    • Resources Recycling
    • /
    • v.11 no.3
    • /
    • pp.31-36
    • /
    • 2002
  • Magnetic separation was carried out in order to improve the magnetite grade of the spent iron oxide catalyst, that was composed with magnetite, ceria and soluble alkaline salt. The recovery of magnetite from the spent iron oxide catalyst was over 99%, and the magnetite contents was upgraded to about 80% from 70% via wet type magnetic separation at 500 Gauss. This improvement was due to the removal of alkaline salt by water instead of the magnetic separation.

Pre-leaching of Lithium and Individual Separation/Recovery of Phosphorus and Iron from Waste Lithium Iron Phosphate Cathode Materials (폐리튬인산철 양극재로부터 리튬의 선침출 및 인과 철의 개별적 분리 회수 연구)

  • Hee-Seon Kim;Boram Kim;Dae-Weon Kim
    • Clean Technology
    • /
    • v.30 no.1
    • /
    • pp.28-36
    • /
    • 2024
  • As demand for electric vehicles increases, the market for lithium-ion batteries is also rapidly increasing. The battery life of lithium-ion batteries is limited, so waste lithium-ion batteries are inevitably generated. Accordingly, lithium was selectively preleached from waste lithium iron phosphate (LiFePO4, hereafter referred to as the LFP) cathode material powder among lithium ion batteries, and iron phosphate (FePO4) powder was recovered. The recovered iron phosphate powder was mixed with alkaline sodium carbonate (Na2CO3) powder and heat treated to confirm its crystalline phase. The heat treatment temperature was set as a variable, and then the leaching rate and powder characteristics of each ingredient were compared after water leaching using Di-water. In this study, lithium showed a leaching rate of approximately 100%, and in the case of powder heat-treated at 800 ℃, phosphorus was leached by approximately 99%, and the leaching residue was confirmed to be a single crystal phase of Fe2O3. Therefore, in this study, lithium, phosphorus, and iron components were individually separated and recovered from waste LFP powder.