• Title/Summary/Keyword: reconstructed image

Search Result 1,143, Processing Time 0.029 seconds

A Common Bitmap Block Truncation Coding for Color Images Based on Binary Ant Colony Optimization

  • Li, Zhihong;Jin, Qiang;Chang, Chin-Chen;Liu, Li;Wang, Anhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2326-2345
    • /
    • 2016
  • For the compression of color images, a common bitmap usually is generated to replace the three individual bitmaps that originate from block truncation coding (BTC) of the R, G and B channels. However, common bitmaps generated by some traditional schemes are not the best possible because they do not consider the minimized distortion of the entire color image. In this paper, we propose a near-optimized common bitmap scheme for BTC using Binary Ant Colony Optimization (BACO), producing a BACO-BTC scheme. First, the color image is compressed by the BTC algorithm to get three individual bitmaps, and three pairs of quantization values for the R, G, and B channels. Second, a near-optimized common bitmap is generated with minimized distortion of the entire color image based on the idea of BACO. Finally, the color image is reconstructed easily by the corresponding quantization values according to the common bitmap. The experimental results confirmed that reconstructed image of the proposed scheme has better visual quality and less computational complexity than the referenced schemes.

Validation of Deep-Learning Image Reconstruction for Low-Dose Chest Computed Tomography Scan: Emphasis on Image Quality and Noise

  • Joo Hee Kim;Hyun Jung Yoon;Eunju Lee;Injoong Kim;Yoon Ki Cha;So Hyeon Bak
    • Korean Journal of Radiology
    • /
    • v.22 no.1
    • /
    • pp.131-138
    • /
    • 2021
  • Objective: Iterative reconstruction degrades image quality. Thus, further advances in image reconstruction are necessary to overcome some limitations of this technique in low-dose computed tomography (LDCT) scan of the chest. Deep-learning image reconstruction (DLIR) is a new method used to reduce dose while maintaining image quality. The purposes of this study was to evaluate image quality and noise of LDCT scan images reconstructed with DLIR and compare with those of images reconstructed with the adaptive statistical iterative reconstruction-Veo at a level of 30% (ASiR-V 30%). Materials and Methods: This retrospective study included 58 patients who underwent LDCT scan for lung cancer screening. Datasets were reconstructed with ASiR-V 30% and DLIR at medium and high levels (DLIR-M and DLIR-H, respectively). The objective image signal and noise, which represented mean attenuation value and standard deviation in Hounsfield units for the lungs, mediastinum, liver, and background air, and subjective image contrast, image noise, and conspicuity of structures were evaluated. The differences between CT scan images subjected to ASiR-V 30%, DLIR-M, and DLIR-H were evaluated. Results: Based on the objective analysis, the image signals did not significantly differ among ASiR-V 30%, DLIR-M, and DLIR-H (p = 0.949, 0.737, 0.366, and 0.358 in the lungs, mediastinum, liver, and background air, respectively). However, the noise was significantly lower in DLIR-M and DLIR-H than in ASiR-V 30% (all p < 0.001). DLIR had higher signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) than ASiR-V 30% (p = 0.027, < 0.001, and < 0.001 in the SNR of the lungs, mediastinum, and liver, respectively; all p < 0.001 in the CNR). According to the subjective analysis, DLIR had higher image contrast and lower image noise than ASiR-V 30% (all p < 0.001). DLIR was superior to ASiR-V 30% in identifying the pulmonary arteries and veins, trachea and bronchi, lymph nodes, and pleura and pericardium (all p < 0.001). Conclusion: DLIR significantly reduced the image noise in chest LDCT scan images compared with ASiR-V 30% while maintaining superior image quality.

Fractal Image Compression Based on Wavelet Transform Domain Using Significant Coefficient Tree (웨이브렛 변환 영역에서의 유효계수 트리를 이용한 프랙탈 영상 압축 방법)

  • 배성호;박길흠
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.11
    • /
    • pp.62-71
    • /
    • 1996
  • In this paper we propose a method that improves PSNR at low bit rate and reduces computational complexity in fractal image coding based on discrete wavelet transform. The proposed method, which uses significant coefficient tree, improves PSNR of the reconstructed image and reduces computational comlexity of mapping domain block onto range block by matching only the significant coefficients of range block to coefficients of domain block. Also, the proposed method reduces error propagation form lower resolution subbands to higher resolution subbands by correcting error of lower resolution subbands. Some experimental results confirm that the proposed method reduces encoding and decoding time significantly and has fine reconstructed images having no blocking effect and clear edges at low bit rate.

  • PDF

SAR Image Processing Using Wavelet-based Sigma Filter and Edgemap (웨이브렛 기반 시그마 필터와 에지맵을 이용한 SAR 영상처리)

  • Go, Gi-Young;Park, Cheol-Woo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.6
    • /
    • pp.155-161
    • /
    • 2009
  • Any classification process using SAR images presupposes the reduction of multiplicative speckle noise, since the variations caused by speckle make it extremely difficult to distinguish between neighboring classes within the feature space. This paper focus an argument of effective filter for preserving the weak boundaries by using the proposed method. To reduce speckle noise without blurring the edges of reconstructed image use wavelet-based sigma filter. As a result, the edge information of reconstructed image reduce blurring. Simulation results show that proposed method gives a better subjective quality than conventional methods for the speckle noise.

  • PDF

Computational Integral Imaging with Enhanced Depth Sensitivity

  • Baasantseren, Ganbat;Park, Jae-Hyeung;Kim, Nam;Kwon, Ki-Chul
    • Journal of Information Display
    • /
    • v.10 no.1
    • /
    • pp.1-5
    • /
    • 2009
  • A novel computational integral imaging technique with enhanced depth sensitivity is proposed. For each lateral position at a given depth plane, the dissimilarity between corresponding pixels of the elemental images is measured and used as a suppressing factor for that position. The intensity values are aggregated to determine the correct depth plane of each plane object. The experimental and simulation results show that the reconstructed depth image on the incorrect depth plane is effectively suppressed, and that the depth image on the correct depth plane is reconstructed clearly without any noise. The correct depth plane is also exactly determined.

A Study for Multiple ROI Coding of Enhanced MAXSHIFT Method (Multiple ROI 코딩을 위한 개선된 Maxshift 기법에 관한 연구)

  • 이한정;이경민;김미화;황도연;박영석;유강수;곽훈성
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1847-1850
    • /
    • 2003
  • In many image-coding applications such as web browsing, image databases, and telemedicine, it is needed that only a region of interest(ROI) is transmitted and then reconstructed first before the whole image is transmitted and reconstructed. The Maxshift method has been used as a standard one in this research about ROI coding in JPEG2000. However Maxshift method can process only one ROI, this paper suggests an improved Maxshift method which can process Multiple ROI haying the priority order. In this method, the ROI coefficient which has the high priority order can be moved to upward two bit plane in order to process multiple ROI.

  • PDF

Role-Balance Based Multi-Secret Images Sharing using Boolean Operations

  • Chan, Chi-Shiang;Chou, Yung-Chen;Chen, Yi-Hui;Tsai, Yuan-Yu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1785-1800
    • /
    • 2014
  • In 2011, Chen and Wu proposed their method of sharing n secret images to n+1 shadow images through the concept of a Boolean-based Visual Secret Sharing (VSS) method. However, the shadow images produced by this method are not equally important. If the participant who owns an important shadow image does not want to cooperate with other participants, most secret images can not be reconstructed. In the proposed method, the relationship between the shadows images and secret images are designed in a circular way mostly. Each shadow image only relates to two secret images. This means that if one participant refuses to cooperate with other participants, there are only two secret images which can not be reconstructed. Moreover, our proposed method only needs to produce n shadow images and n secret images can be shared to them.

Resolution Enhanced Computational Integral Imaging Reconstruction by Using Boundary Folding Mirrors

  • Piao, Yongri;Xing, Luyan;Zhang, Miao;Lee, Min-Chul
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.363-367
    • /
    • 2016
  • In this paper, we present a resolution-enhanced computational integral imaging reconstruction method by using boundary folding mirrors. In the proposed method, to improve the resolution of the computationally reconstructed 3D images, the direct and reflected light information of the 3D objects through a lenslet array with boundary folding mirrors is recorded as a combined elemental image array. Then, the ray tracing method is employed to synthesize the regular elemental image array by using a combined elemental image array. From the experimental results, we can verify that the proposed method can improve the visual quality of the computationally reconstructed 3D images.

Depth-Conversion in Integral Imaging Three-Dimensional Display by Means of Elemental Image Recombination (3차원 영상 재생을 위한 집적결상법에서 기본영상 재조합을 통한 재생영상의 깊이 변환)

  • Ser, Jang-Il;Shin, Seung-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.1
    • /
    • pp.24-30
    • /
    • 2007
  • We have studied depth conversion of a reconstructed image by means of recombination of the elemental images in the integral imaging system for 3D display. With the recombination, depth conversion to the pseudoscopic, the orthoscopic, the real or the virtual as well as to arbitrary depth without any distortion is possible under proper conditions. The conditions on the recombinations for the depth conversion are theoretically derived. The reconstructed images using the converted elemental images are presented.

Applicability of Resistivity Image Profiling to Geologic Survey in the Keoje-do Area (전기비저항 영상법에 의한 거제도의 지반조사)

  • Park, Sam Gyu;Kim, Hee Joon
    • Economic and Environmental Geology
    • /
    • v.27 no.6
    • /
    • pp.563-569
    • /
    • 1994
  • Resistivity Image Profiling has been applied to a geological survey in the Keoje-do area. Survey lines are located near the KD-02 and KD-06 wells in the area, where we have already sampled all rock cores and carried out several kinds of geophysical logs. In each site a resistivity cross-section is obtained by inverting pole-pole apparent resistivities. Comparing the reconstructed resistivity section with the rock cores and logging data obtained in the well provides a detailed picture of subsurface geology. The geology of KD-02 site is composed of conglomerate, sandstone and shale with fractures. The reconstructed resistivity image is useful for assessing the grade of weathering of these rocks. The KD-06 site is mainly underlain by granitic rocks, and its fresh basement can be delineated by resistivities over $1000{\Omega}{\cdot}m$.

  • PDF