• Title/Summary/Keyword: reconstructed image

Search Result 1,143, Processing Time 0.028 seconds

Recovery of Truncated Projection using Non-iterative Extrapolation and Improvement of Image (비반복 외삽법에 의한 불완전 투명 데이터의 재생 및 영상의 개선법)

  • Lee, Gang-Ho;Choe, Jong-Ho;Choe, Jong-Su
    • Journal of Biomedical Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.151-160
    • /
    • 1987
  • An algorithm is suggested that truncted projection among the incomplete projections can be recovered from non-iterative extrapolation matrix by band-limited function. After the image being reconstructed from the recovered signals by non-iterative extrapolation, a known controur information and reprojection algorithm are used. It is shown that the reconstructed image using these algorithms is close to the original image. The effectiveness for these algorithms is proved by computer simulation.

  • PDF

A New Effective Measure of the Block Effect in Still Images and Moving Pictures (정지영상 및 동영상에서의 효율적인 블록효과 측정방법)

  • 김문성;정진구
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.4
    • /
    • pp.102-107
    • /
    • 2002
  • Compression coding based on block coding has been applied in image and video compression standard. But there is no block effect measurement due to block based image coding. In this paper, we propose a objective block effects measurement to reconstructed image using subblock DCT coding. Experimental results show that the block effects measures given by the suggested method agree well with the subjective ranking. This new objective measurement is simple and effective in measuring the block effect in the reconstructed image.

  • PDF

ANALYSIS OF RELATIONSHIP BETWEEN IMAGE COMPRESSION AND GAMUT VARIATION

  • Park, Tae-Yong;Ko, Kyung-Woo;Ha, Yeong-Ho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.80-84
    • /
    • 2009
  • This paper investigates the relationship between the compression ratio and the gamut area for a reconstructed image when using JPEG and JPEG2000. Eighteen color samples from the Macbeth ColorChecker are initially used to analyze the relationship between the compression ratio and the color bleeding phenomenon, i.e. the hue and chroma shifts in the a*b* color plane. In addition, twelve natural color images, divided into two groups depending on four color attributes, are also used to investigate the relationship between the compression ratio and the variation in the gamut area. For each image group, the gamut area for the reconstructed image shows an overall tendency to increase when increasing the compression ratio, similar to the experimental results with the Macbeth ColorChecker samples. However, with a high compression ratio, the gamut area decreases due to the mixture of adjacent colors, resulting in more grey.

  • PDF

RECONSTRUCTION OF LIMITED-ANGLE CT IMAGES BY AN ADAPTIVE RESILIENT BACK-PROPAGATION ALGORITHM

  • Kazunori Matsuo;Zensho Nakao;Chen, Yen-Wei;Fath El Alem F. Ah
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.839-842
    • /
    • 2000
  • A new and modified neural network model Is proposed for CT image reconstruction from four projection directions only. The model uses the Resilient Back-Propagation (Rprop) algorithm, which is derived from the original Back-Propagation, for adaptation of its weights. In addition to the error in projection directions of the image being reconstructed, the proposed network makes use of errors in pixels between an image which passed the median filter and the reconstructed one. Improved reconstruction was obtained, and the proposed method was found to be very effective in CT image reconstruction when the given number of projection directions is very limited.

  • PDF

Development of Immersive Augmented Reality interface for Minimally Invasive Surgery (증강현실 기반의 최소침습수술용 인터페이스의 개발)

  • Moon, Jin-Ki;Park, Shin-Suk;Kim, Eugene;Kim, Jin-Wook
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.1
    • /
    • pp.58-67
    • /
    • 2008
  • This study developed a novel augmented reality interface for minimally invasive surgery. The augmented reality technique can alleviate the sensory feedback problem inherent to laparoscopic surgery. An augmented reality system merges real laparoscope image and reconstructed 3D patient model based on diagnostic medical image such as CT, MRI data. By using reconstructed 3D patient model, AR interface could express structure of patient body that is invisible outside visual field of laparoscope. Therefore, an augmented reality system improved sight information of limited laparoscope. In our augmented reality system, the laparoscopic view is located at the center of a wide-angle concave screen and reconstructed 3D patient model is displayed outside the laparoscope. By using a joystick, the laparoscopic view and the reconstructed 3D patient model view are changed concurrently. With our augmented reality system, the surgeon can see the peritoneal cavity from a wide angle of view, without having to move the laparoscope. Since the concave screen serves immersive environments, the surgeon can feel as if she is in the patient body. For these reasons, a surgeon can recognize easily depth information about inner parts of patient and position information of surgical instruments without laparoscope motion. It is possible for surgeon to manipulate surgical instruments more exact and fast. Therefore immersive augmented reality interface for minimally invasive surgery will reduce bodily, environmental load of a surgeon and increase efficiency of MIS.

  • PDF

Comparisons of Object Recognition Performance with 3D Photon Counting & Gray Scale Images

  • Lee, Chung-Ghiu;Moon, In-Kyu
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.388-394
    • /
    • 2010
  • In this paper the object recognition performance of a photon counting integral imaging system is quantitatively compared with that of a conventional gray scale imaging system. For 3D imaging of objects with a small number of photons, the elemental image set of a 3D scene is obtained using the integral imaging set up. We assume that the elemental image detection follows a Poisson distribution. Computational geometrical ray back propagation algorithm and parametric maximum likelihood estimator are applied to the photon counting elemental image set in order to reconstruct the original 3D scene. To evaluate the photon counting object recognition performance, the normalized correlation peaks between the reconstructed 3D scenes are calculated for the varied and fixed total number of photons in the reconstructed sectional image changing the total number of image channels in the integral imaging system. It is quantitatively illustrated that the recognition performance of the photon counting integral imaging system can be similar to that of a conventional gray scale imaging system as the number of image viewing channels in the photon counting integral imaging (PCII) system is increased up to the threshold point. Also, we present experiments to find the threshold point on the total number of image channels in the PCII system which can guarantee a comparable recognition performance with a gray scale imaging system. To the best of our knowledge, this is the first report on comparisons of object recognition performance with 3D photon counting & gray scale images.

Defect Inspection of the Polarizer Film Using Singular Vector Decomposition (특이값 분해를 이용한 편광필름 결함 검출)

  • Jang, Kyung-Shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.997-1003
    • /
    • 2007
  • In this paper, we propose a global approach for automatic inspection of defects in the polarizer film image. The proposed method does not rely on local feature of the defect. It is based on a global image reconstruction scheme using the singular value decomposition(SVD). SVD is used to decompose the image and then obtain a diagonal matrix of the singular values. Among the singular values, the first singular value is used to reconstruct a image. In reconstructed image, the normal pixels in background region have a different characteristics from the pixels in defect region. It is obtained the ratio of pixels in the reconstructed image to ones in the original image and then the defects are detected based on the the statistical process of the ratio. The experiment results show that the proposed method is efficient for defect inspection of polarizer lam image.

Research on Camouflaged Encryption Scheme Based on Hadamard Matrix and Ghost Imaging Algorithm

  • Leihong, Zhang;Yang, Wang;Hualong, Ye;Runchu, Xu;Dawei, Zhang
    • Current Optics and Photonics
    • /
    • v.5 no.6
    • /
    • pp.686-698
    • /
    • 2021
  • A camouflaged encryption scheme based on Hadamard matrix and ghost imaging is proposed. In the process of the encryption, an orthogonal matrix is used as the projection pattern of ghost imaging to improve the definition of the reconstructed images. The ciphertext of the secret image is constrained to the camouflaged image. The key of the camouflaged image is obtained by the method of sparse decomposition by principal component orthogonal basis and the constrained ciphertext. The information of the secret image is hidden into the information of the camouflaged image which can improve the security of the system. In the decryption process, the authorized user needs to extract the key of the secret image according to the obtained random sequences. The real encrypted information can be obtained. Otherwise, the obtained image is the camouflaged image. In order to verify the feasibility, security and robustness of the encryption system, binary images and gray-scale images are selected for simulation and experiment. The results show that the proposed encryption system simplifies the calculation process, and also improves the definition of the reconstructed images and the security of the encryption system.

A Study on Lohmann Type Computer Generated Holograms Using a Circular Cell (원형 셀을 이용한 Lohmann형 컴퓨터 형성 홀로그램에 관한 연구)

  • Seo, Choon-Su;Jeong, Man-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.6
    • /
    • pp.519-524
    • /
    • 2006
  • In general, the Lohmann-type binary hologram represents its amplitude and phase by using the rectangular cell. In this paper, we adapts a circular cell to represents the amplitude and phase of holograms. In order to compare the characteristics of the circular cell with the rectangular one, we analyzed the results based on the computer simulations and various optical experiments. The results show that a clearer reconstructed image can be obtained by dividing one cell into many pixels. In the case of a uniform reconstructed image, the rectangular cell is better than the circular cell. However, as for the brightness of the reconstructed image, the circular cell is better than the rectangular one.

Optical Image Split-encryption Based on Object Plane for Completely Removing the Silhouette Problem

  • Li, Weina;Phan, Anh-Hoang;Jeon, Seok-Hee;Kim, Nam
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.384-391
    • /
    • 2013
  • We propose a split-encryption scheme on converting original images to multiple ciphertexts. This conversion introduces one random phase-only function (POF) to influence phase distribution of the preliminary ciphertexts. In the encryption process, the original image is mathematically split into two POFs. Then, they are modulated on a spatial light modulator one after another. And subsequently two final ciphertexts are generated by utilizing two-step phase-shifting interferometry. In the decryption process, a high-quality reconstructed image with relative error $RE=7.6061{\times}10^{-31}$ can be achieved only when the summation of the two ciphertexts is Fresnel-transformed to the reconstructed plane. During the verification process, any silhouette information was invisible in the two reconstructed images from different single ciphertexts. Both of the two single REs are more than 0.6, which is better than in previous research. Moreover, this proposed scheme works well with gray images.