• Title/Summary/Keyword: reconfigurable technology

Search Result 177, Processing Time 0.029 seconds

A Proposal of Programmable Logic Architecture for Reconfigurable Computing

  • Iida, Masahiro;Sueyoshi, Toshinori
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1547-1550
    • /
    • 2002
  • Reconfigurable computing is a new computing paradigm which has more potential in terms of performance and flexibility. Reconfigurable computing systems are opening a new era in digital signal processing such as multimedia, communication and consumer electronics because they can filter data rapidly and excel at pattern recognition, image process- ing and encryption. Although many reconfigurable computing systems use a conventional programmable device, they carry several serious problems to be solved. This paper proposes a logic block architecture of programmable device suit-able for the reconfigurable computing. Compared to conventional logic blocks, our logic block can improve implementation density, efficiency and speed.

  • PDF

Hierarchical Multiplexing Interconnection Structure for Fault-Tolerant Reconfigurable Chip Multiprocessor

  • Kim, Yoon-Jin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.318-328
    • /
    • 2011
  • Stage-level reconfigurable chip multiprocessor (CMP) aims to achieve highly reliable and fault tolerant computing by using interwoven pipeline stages and on-chip interconnect for communicating with each other. The existing crossbar-switch based stage-level reconfigurable CMPs offer high reliability at the cost of significant area/power overheads. These overheads make realizing large CMPs prohibitive due to the area and power consumed by heavy interconnection networks. On other hand, area/power-efficient architectures offer less reliability and inefficient stage-level resource utilization. In this paper, I propose a hierarchical multiplexing interconnection structure in lieu of crossbar interconnect to design area/power-efficient stage-level reconfigurable CMP. The proposed approach is able to keep the reliability offered by the crossbar-switch while reducing the area and power overheads. Experimental results show that the proposed approach reduces area by up to 21% and power by up to 32% when compared with the crossbar-switch based interconnection network.

Design, Fabrication and Measurement of a Compact, Frequency Reconfigurable, Modified T-shape Planar Antenna for Portable Applications

  • Iqbal, Amjad;Ullah, Sadiq;Naeem, Umair;Basir, Abdul;Ali, Usman
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1611-1618
    • /
    • 2017
  • This paper presents a compact reconfigurable printed monopole antenna, operating in three different frequency bands (2.45 GHz, 3 GHz and 5.2 GHz), depending upon the state of the lumped element switch. The proposed multiband reconfigurable antenna is designed and fabricated on a 1.6 mm thicker FR-4 substrate having a relative permittivity of 4.4. When the switch is turned ON, the antenna operates in a dual band frequency mode, i.e. WiFi at 2.45 GHz (2.06-3.14 GHz) and WLAN at 5.4 GHz (5.11-5.66 GHz). When the switch is turned OFF, it operates only at 3 GHz (2.44-3.66 GHz). The antenna radiates omni-directionally in these bands with an adequate, bandwidth (>10 %), efficiency (>90 %), gain (>1.2 dB), directivity (>1.7 dBi) and VSWR (<2). The fabricated antenna is tested in the laboratory to validate the simulated results. The antenna, due to its reasonably compact size ($39{\times}37mm^2$), can be used in portable devices such as laptops and iPads.

Transmission Characteristics of Curved Reconfigurable Frequency Selective Structure (곡면 재구성 주파수 선택막의 투과특성)

  • Lee, In-Gon;Hong, Ic-Pyo;Chun, Heoung-Jae;Park, Yong-Bae;Kim, Yoon-Jae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.311-317
    • /
    • 2014
  • In this paper, the flexible and reconfigurable frequency selective surface for C-band was designed using patch array and grid structure for radome and other curved surface applications. Frequency reconfigurability was obtained by varying the capacitance of varactor diode and flexibility is implemented by using flexible PCB. For the validity of the proposed structure, we fabricated the flexible and reconfigurable frequency selective structure and measured the frequency reconfigurability for different bias voltages and different curvature surfaces from the optimized design parameters. From the measurement results, we know that the proposed structure has the wideband reconfigurable frequency bandwidth of 6.05-7.08GHz. We can apply this proposed structure to the curved surface like as radome of aircraft or warship.

Development of Prediction Model for Flexibly-reconfigurable Roll Forming based on Experimental Study (실험적 연구를 통한 비정형롤판재성형 예측 모델 개발)

  • Park, J.W.;Kil, M.G.;Yoon, J.S.;Kang, B.S.;Lee, K.
    • Transactions of Materials Processing
    • /
    • v.26 no.6
    • /
    • pp.341-347
    • /
    • 2017
  • Flexibly-reconfigurable roll forming (FRRF) is a novel sheet metal forming technology conducive to produce multi-curvature surfaces by controlling strain distribution along longitudinal direction. Reconfigurable rollers could be arranged to implement a kind of punch die set. By utilizing these reconfigurable rollers, desired curved surface can be formed. In FRRF process, three-dimensional surface is formed from two-dimensional curve. Thus, it is difficult to predict the forming result. In this study, a regression analysis was suggested to construct a predictive model for a longitudinal curvature of FRRF process. To facilitate investigation, input parameters affecting the longitudinal curvature of FRRF were determined as maximum compression value, curvature radius in the transverse direction, and initial blank width. Three-factor three-level full factorial experimental design was utilized and 27 experiments using FRRF apparatus were performed to obtain sample data of the regression model. Regression analysis was carried out using experimental results as sample data. The model used for regression analysis was a quadratic nonlinear regression model. Determination factor and root mean square root error were calculated to confirm the conformity of this model. Through goodness of fit test, this regression predictive model was verified.

A Cache-based Reconfigurable Accelerator in Die-stacked DRAM (3차원 구조 DRAM의 캐시 기반 재구성형 가속기)

  • Kim, Yongjoo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.2
    • /
    • pp.41-46
    • /
    • 2015
  • The demand on low power and high performance system is soaring due to the extending of mobile and small electronic device market. The 3D die-stacking technology is widely studying for next generation integration technology due to its high density and low access time. We proposed the 3D die-stacked DRAM including a reconfigurable accelerator in a logic layer of DRAM. Also we discuss and suggest a cache-based local memory for a reconfigurable accelerator in a logic layer. The reconfigurable accelerator in logic layer of 3D die-stacked DRAM reduces the overhead of data management and transfer due to the characteristics of its location, so that can increase the performance highly. The proposed system archives 24.8 speedup in maximum.

Design of Beam-Forming Array Antenna with a Reconfigurable Power Divider (저손실 재구성 분배기를 이용한 빔 성형 배열 안테나 설계)

  • Tae, Hyun-Sung;Son, Wang-Ik;Jang, Hyung-Seok;Oh, Kyoung-Sub;Yu, Jong-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.4
    • /
    • pp.431-440
    • /
    • 2012
  • In this paper, new beam-forming array antenna is proposed. The proposed beam-forming array antenna has control ability for beam-direction/width by employing low loss reconfigurable power divide and three-dimensional array structure. The reconfigurable power divider is key idea in the proposed antenna, because it has reconfigurable RF power distribution ability to each antenna. And, for research and verification of the proposed antenna, 3-dimensional beam-forming array antenna is implemented, and the experimental results show that the proposed antenna has various radiation modes from 1:1 to 1:N by adjusting RF power distribution.

Evaluation of Formability Dependent on Reconfigurable Roller Types for 3D Curved Sheet Forming (3차원 곡판 성형을 위한 비정형롤러의 형태에 따른 성형성 평가)

  • Son, S.E.;Yoon, J.S.;Kim, H.H.;Kim, J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.25 no.1
    • /
    • pp.12-20
    • /
    • 2016
  • Press machines and dies are commonly used for 3D curved sheet forming. Using conventional die forming can cause economic problems since various modifications of the die shape are required depending on the product shape. Various types of flexible forming such as multi-point dieless forming (MDF), flexible incremental roll forming have been developed to improve the needed process flexibility. Although MDF can reduce the production cost using reconfigurable dies, it still has significant material loss. Drawbacks such as wrinkling, dimpling, and forming errors can also occur despite continuous investigations to mitigate these defects. A novel sheet forming process for 3D curved surfaces, a flexibly-reconfigurable roll forming (FRRF), has been recently proposed to overcome the economic and technical limitations of current practice. FRRF has no limitation on blank size in the longitudinal direction, and also minimizes or eliminates forming defects such as wrinkling and dimpling. Feasibility studies of FRRF have been conducted using FE simulations for multi-curved shapes and various sheet thicknesses. Therefore, the fabrication of a FRRF apparatus is required for any follow-up studies. In the current study, experiments with reconfigurable rollers were conducted using a simple design pre-FRRF apparatus prior to fabricating the full size FRRF apparatus. There are three candidates for the reconfigurable roller: a bar-type shaft, a flexible shaft, a ground flexible shaft. Among these candidates, the suitable reconfigurable roller for FRRF is determined through various forming tests.

Shape Prediction of Flexibly-reconfigurable Roll Forming Using Regression Analysis (회귀분석을 활용한 비정형롤판재성형 공정의 형상 예측)

  • Park, J.W.;Yoon, J.S.;Kim, J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.25 no.3
    • /
    • pp.182-188
    • /
    • 2016
  • Flexibly-reconfigurable roll forming (FRRF) is a novel sheet metal forming technology conducive to producing multi-curvature surfaces by controlling the strain distribution along longitudinal direction. In FRRF, a sheet metal is shaped into the desired curvature by using reconfigurable rollers and gaps between the rollers. As FRRF technology and equipment are under development, a simulation model corresponding to the physical FRRF would aid in investigating how the shape of a sheet varies with input parameters. To facilitate the investigation, the current study exploits regression analysis to construct a predictive model for the longitudinal curvature of the sheet. Variables considered as input parameters are sheet compression ratio, radius of curvature in the transverse direction, and initial blank width. Samples were generated by a three-level, three-factor full factorial design, and both convex and saddle curvatures are represented by a quadratic regression model with two-factor interactions. The fitted quadratic equations were verified numerically with R-squared values and root mean square errors.