• Title/Summary/Keyword: reconfigurable

Search Result 536, Processing Time 0.032 seconds

Evaluation of Car Prototype using CAVE-like Systems (케이브 기반 자동차 시제품 평가)

  • 고희동;안희갑;김진욱;김종국;송재복;어홍준;윤명환;우인수;박연동
    • Science of Emotion and Sensibility
    • /
    • v.5 no.4
    • /
    • pp.77-84
    • /
    • 2002
  • In this paper, we propose the NAVER, a general framework for multipurpose virtual environments, and introduce the case study of evaluating car prototypes using cave-like systems. As a framework to implement variant applications in virtual environment, NAVER is extensible, reconfigurable and scalable. NAVER consists of several external modules (Render Server, Control Server and Device Server), which communicate each other to share states and user-provided data and to perform their own functions. NAVER supports its own scripting language based on XML which allows a user to define variant interactions between objects in virtual environments as well as describe the scenario of an application. We used NAVER to implement the system for evaluating car prototyes in a CAVE-like virtual environment system. The CAVE-like virtual environment system at KIST consists three side screens and a floor screen (each of them is a square with side of 2.2m), four CRT projectors displays stereoscopic images to the screens, a haptic armmaster, and a 5.1 channel sound system. The system can provide a sense of reality by displaying auditory and tactile senses as well as visual images at the same time. We evaluate car prototypes in a CAVE-like system in which a user can observe, touch and manipulate the virtual installation of car interior.

  • PDF

Design of 4-bit Gray Counter Simulated with a Macro-Model for Single-Layer Magnetic-Tunnel-Junction Elements (단층 입력 구조의 Magnetic-Tunnel-Junction 소자용 Macro-Model을 이용한 4비트 그레이 카운터의 설계)

  • Lee, Seung-Yeon;Lee, Gam-Young;Lee, Hyun-Joo;Lee, Seung-Jun;Shin, Hyung-Soon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.9
    • /
    • pp.10-17
    • /
    • 2007
  • It opens a new horizon on spintronics for the potential application of MTJ as a universal logic element, to employ the magneto-logic in substitution for the transistor-based logic device. The magneto-logic based on the MTJ element shows many potential advantages, such as high density, and nonvolatility. Moreover, the MTJ element has programmability and can therefore realize the full logic functions just by changing the input signals. This magneto-logic using MTJ elements can embody the reconfigurable circuit to overcome the rigid architecture. The established magneto-logic element has been designed and fabricated on a triple-layer MTJ. We present a novel magneto-logic structure that consists of a single layer MTJ and a current driver, which requires less processing steps with enhanced functional flexibility and uniformity. A 4-bit gray counter is designed to verify the magneto-logic functionality of the proposed single-layer MTJ and the simulation results are presented with the HSPICE macro-model of MTJ that we have developed.

An Efficient WLAN Device Power Control Technique for Streaming Multimedia Contents over Mobile IP Storage (모바일 IP 스토리지 상에서 멀티미디어 컨텐츠 실행을 위한 효율적인 무선랜 장치 전력제어 기법)

  • Nam, Young-Jin;Choi, Min-Seok
    • The KIPS Transactions:PartA
    • /
    • v.16A no.5
    • /
    • pp.357-368
    • /
    • 2009
  • Mobile IP storage has been proposed to overcome storage limitation in the flash memory and hard disks. It provides almost capacity-free space for mobile devices over wireless IP networks. However, battery lifetime of the mobile devices is reduced rapidly because of power consumption with continuous use of a WLAN device when multimedia contents are being streamed through the mobile IP storage. This paper proposes an energy-efficient WLAN device power control technique for streaming multimedia contents with the mobile IP storage. The proposed technique consists of a prefetch buffer input/output module, a WLAN device power control module, and a reconfigurable prefetch buffer module. Besides, it adaptively determines the size of the prefetch buffer according to a quality of the multimedia contents, and it dynamically controls the power mode of the WLAN device on the basis of power on-off operations while streaming the multimedia contents. We evaluate the performance of the proposed technique on a PXA270-based mobile device that employs the embedded linux 2.6.11, Intel iSCSI reference codes, and a WLAN device. Extensive experiments reveal that the proposed technique can save the energy consumption of the WLAN device up to 8.5 times with QVGA multimedia contents, as compared with no power control.

Core-aware Cache Replacement Policy for Reconfigurable Last Level Cache (재구성 가능한 라스트 레벨 캐쉬 구조를 위한 코어 인지 캐쉬 교체 기법)

  • Son, Dong-Oh;Choi, Hong-Jun;Kim, Jong-Myon;Kim, Cheol-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.11
    • /
    • pp.1-12
    • /
    • 2013
  • In multi-core processors, Last Level Cache(LLC) can reduce the speed gap between the memory and the core. For this reason, LLC has big impact on the performance of processors. LLC is composed of shared cache and private cache. In computer architecture community, most researchers have mainly focused on the management techniques for shared cache, while management techniques for private cache have not been widely researched. In conventional private LLC, memory is statically assigned to each core, resulting in serious performance degradation when the workloads are not fairly distributed. To overcome this problem, this paper proposes the replacement policy for managing private cache of LLC efficiently. As proposed core-aware cache replacement policy can reconfigure LLC dynamically, hit rate of LLC is increases drastically. Moreover, proposed policy uses 2-bit saturating counters to improve the performance. According to our simulation results, the proposed method can improve hit rates by 9.23% and reduce the access time by 12.85% compared to the conventional method.

Specifying the Characteristics of Tangible User Interface: centered on the Science Museum Installation (실물형 인터렉션 디자인 특성 분석: 과학관 체험 전시물을 대상으로)

  • Cho, Myung Eun;Oh, Myung Won;Kim, Mi Jeong
    • Science of Emotion and Sensibility
    • /
    • v.15 no.4
    • /
    • pp.553-564
    • /
    • 2012
  • Tangible user interfaces have been developed in the area of Human-Computer Interaction for the last decades, however, the applied domains recently have been extended into the product design and interactive art. Tangible User Interfaces are the combination of digital information and physical objects or environments, thus they provide tangible and intuitive interaction as input and output devices, often combined with Augmented Reality. The research developed a design guideline for tangible user interfaces based on key properties of tangible user interfaces defined previously in five representative research: Tangible Interaction, Intuitiveness and Convenience, Expressive Representation, Context-aware and Spatial Interaction, and Social Interaction. Using the guideline emphasizing user interaction, this research evaluated installation in a science museum in terms of the applied characteristics of tangible user interfaces. The selected 15 installations which were evaluated are to educate visitors for science by emphasizing manipulation and experience of interfaces in those installations. According to the input devices, they are categorized into four Types. TUI properties in Type 3 installation, which uses body motions for interaction, shows the highest score, where items for context-aware and spatial interaction were highly rated. The context-aware and spatial interaction have been recently emphasized as extended properties of tangible user interfaces. The major type of installation in the science museum is equipped with buttons and joysticks for physical manipulation, thus multimodal interfaces utilizing visual, aural, tactile senses etc need to be developed to provide more innovative interaction. Further, more installation need to be reconfigurable for embodied interaction between users and the interactive space. The proposed design guideline can specify the characteristics of tangible user interfaces, thus this research can be a basis for the development and application of installation involving more TUI properties in future.

  • PDF

Hardware Approach to Fuzzy Inference―ASIC and RISC―

  • Watanabe, Hiroyuki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.975-976
    • /
    • 1993
  • This talk presents the overview of the author's research and development activities on fuzzy inference hardware. We involved it with two distinct approaches. The first approach is to use application specific integrated circuits (ASIC) technology. The fuzzy inference method is directly implemented in silicon. The second approach, which is in its preliminary stage, is to use more conventional microprocessor architecture. Here, we use a quantitative technique used by designer of reduced instruction set computer (RISC) to modify an architecture of a microprocessor. In the ASIC approach, we implemented the most widely used fuzzy inference mechanism directly on silicon. The mechanism is beaded on a max-min compositional rule of inference, and Mandami's method of fuzzy implication. The two VLSI fuzzy inference chips are designed, fabricated, and fully tested. Both used a full-custom CMOS technology. The second and more claborate chip was designed at the University of North Carolina(U C) in cooperation with MCNC. Both VLSI chips had muliple datapaths for rule digital fuzzy inference chips had multiple datapaths for rule evaluation, and they executed multiple fuzzy if-then rules in parallel. The AT & T chip is the first digital fuzzy inference chip in the world. It ran with a 20 MHz clock cycle and achieved an approximately 80.000 Fuzzy Logical inferences Per Second (FLIPS). It stored and executed 16 fuzzy if-then rules. Since it was designed as a proof of concept prototype chip, it had minimal amount of peripheral logic for system integration. UNC/MCNC chip consists of 688,131 transistors of which 476,160 are used for RAM memory. It ran with a 10 MHz clock cycle. The chip has a 3-staged pipeline and initiates a computation of new inference every 64 cycle. This chip achieved an approximately 160,000 FLIPS. The new architecture have the following important improvements from the AT & T chip: Programmable rule set memory (RAM). On-chip fuzzification operation by a table lookup method. On-chip defuzzification operation by a centroid method. Reconfigurable architecture for processing two rule formats. RAM/datapath redundancy for higher yield It can store and execute 51 if-then rule of the following format: IF A and B and C and D Then Do E, and Then Do F. With this format, the chip takes four inputs and produces two outputs. By software reconfiguration, it can store and execute 102 if-then rules of the following simpler format using the same datapath: IF A and B Then Do E. With this format the chip takes two inputs and produces one outputs. We have built two VME-bus board systems based on this chip for Oak Ridge National Laboratory (ORNL). The board is now installed in a robot at ORNL. Researchers uses this board for experiment in autonomous robot navigation. The Fuzzy Logic system board places the Fuzzy chip into a VMEbus environment. High level C language functions hide the operational details of the board from the applications programme . The programmer treats rule memories and fuzzification function memories as local structures passed as parameters to the C functions. ASIC fuzzy inference hardware is extremely fast, but they are limited in generality. Many aspects of the design are limited or fixed. We have proposed to designing a are limited or fixed. We have proposed to designing a fuzzy information processor as an application specific processor using a quantitative approach. The quantitative approach was developed by RISC designers. In effect, we are interested in evaluating the effectiveness of a specialized RISC processor for fuzzy information processing. As the first step, we measured the possible speed-up of a fuzzy inference program based on if-then rules by an introduction of specialized instructions, i.e., min and max instructions. The minimum and maximum operations are heavily used in fuzzy logic applications as fuzzy intersection and union. We performed measurements using a MIPS R3000 as a base micropro essor. The initial result is encouraging. We can achieve as high as a 2.5 increase in inference speed if the R3000 had min and max instructions. Also, they are useful for speeding up other fuzzy operations such as bounded product and bounded sum. The embedded processor's main task is to control some device or process. It usually runs a single or a embedded processer to create an embedded processor for fuzzy control is very effective. Table I shows the measured speed of the inference by a MIPS R3000 microprocessor, a fictitious MIPS R3000 microprocessor with min and max instructions, and a UNC/MCNC ASIC fuzzy inference chip. The software that used on microprocessors is a simulator of the ASIC chip. The first row is the computation time in seconds of 6000 inferences using 51 rules where each fuzzy set is represented by an array of 64 elements. The second row is the time required to perform a single inference. The last row is the fuzzy logical inferences per second (FLIPS) measured for ach device. There is a large gap in run time between the ASIC and software approaches even if we resort to a specialized fuzzy microprocessor. As for design time and cost, these two approaches represent two extremes. An ASIC approach is extremely expensive. It is, therefore, an important research topic to design a specialized computing architecture for fuzzy applications that falls between these two extremes both in run time and design time/cost. TABLEI INFERENCE TIME BY 51 RULES {{{{Time }}{{MIPS R3000 }}{{ASIC }}{{Regular }}{{With min/mix }}{{6000 inference 1 inference FLIPS }}{{125s 20.8ms 48 }}{{49s 8.2ms 122 }}{{0.0038s 6.4㎲ 156,250 }} }}

  • PDF