• Title/Summary/Keyword: reconfigurable

Search Result 536, Processing Time 0.03 seconds

Reconfigurable Hardware Structures for Spreading and Scrambling Operations

  • Jeong, Sug H.;Sunwoo, Myung H.;Oh, Seong K.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.4
    • /
    • pp.199-204
    • /
    • 2003
  • This paper proposes reconfigurable hardware structures for spreading and scrambling of multi-mode CDMA systems. The proposed reconfigurable structures supporting IS-95, cdma2000 and WCDMA, include a pseudo noise code generator, a channelization code generator and a control circuit for signal flow control. The proposed reconfigurable structures provide an efficient hardware usage for multi-mode CDMA systems. The synthesis results show the area reduction about 24.7% compared with the original code generators. The proposed structures can provide efficient reconfigurability and high speed operations for future SDR systems.

A Proposal of Programmable Logic Architecture for Reconfigurable Computing

  • Iida, Masahiro;Sueyoshi, Toshinori
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1547-1550
    • /
    • 2002
  • Reconfigurable computing is a new computing paradigm which has more potential in terms of performance and flexibility. Reconfigurable computing systems are opening a new era in digital signal processing such as multimedia, communication and consumer electronics because they can filter data rapidly and excel at pattern recognition, image process- ing and encryption. Although many reconfigurable computing systems use a conventional programmable device, they carry several serious problems to be solved. This paper proposes a logic block architecture of programmable device suit-able for the reconfigurable computing. Compared to conventional logic blocks, our logic block can improve implementation density, efficiency and speed.

  • PDF

Hierarchical Multiplexing Interconnection Structure for Fault-Tolerant Reconfigurable Chip Multiprocessor

  • Kim, Yoon-Jin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.318-328
    • /
    • 2011
  • Stage-level reconfigurable chip multiprocessor (CMP) aims to achieve highly reliable and fault tolerant computing by using interwoven pipeline stages and on-chip interconnect for communicating with each other. The existing crossbar-switch based stage-level reconfigurable CMPs offer high reliability at the cost of significant area/power overheads. These overheads make realizing large CMPs prohibitive due to the area and power consumed by heavy interconnection networks. On other hand, area/power-efficient architectures offer less reliability and inefficient stage-level resource utilization. In this paper, I propose a hierarchical multiplexing interconnection structure in lieu of crossbar interconnect to design area/power-efficient stage-level reconfigurable CMP. The proposed approach is able to keep the reliability offered by the crossbar-switch while reducing the area and power overheads. Experimental results show that the proposed approach reduces area by up to 21% and power by up to 32% when compared with the crossbar-switch based interconnection network.

Reconfigurable FIR Filter Design Using Partial Reconfiguration (부분 재구성 방법을 이용한 재구성형 FIR 필터 설계)

  • Choi, Chang-Seok;Lee, Han-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.4
    • /
    • pp.97-102
    • /
    • 2007
  • This paper presents our implemented, synthesized and tested on demand and partial reconfiguration approaches for FIR filters using Xilinx Virtex FPGAs. Our scope is implementation of a low-power, area-efficient autonomously reconfigurable digital signal processing architecture that is tailored for the realization of arbitrary response FIR filters on Xilinx Virtex4 FPGAs. The implementation of design addresses area efficiency and flexibility allowing dynamically inserting and/or removing the partial modules to implement the partial reconfigurable FIR filters with various taps. This partial reconfigurable FIR filter design shows the configuration time improvement, good area efficiency and flexibility by using the dynamic partial reconfiguration method.

Low-Power Channel-Adaptive Reconfigurable 4×4 QRM-MLD MIMO Detector

  • Kurniawan, Iput Heri;Yoon, Ji-Hwan;Kim, Jong-Kook;Park, Jongsun
    • ETRI Journal
    • /
    • v.38 no.1
    • /
    • pp.100-111
    • /
    • 2016
  • This paper presents a low-complexity channel-adaptive reconfigurable $4{\times}4$ QR-decomposition and M-algorithm-based maximum likelihood detection (QRM-MLD) multiple-input and multiple-output (MIMO) detector. Two novel design approaches for low-power QRM-MLD hardware are proposed in this work. First, an approximate survivor metric (ASM) generation technique is presented to achieve considerable computational complexity reduction with minor BER degradation. A reconfigurable QRM-MLD MIMO detector (where the M-value represents the number of survival branches in a stage) for dynamically adapting to time-varying channels is also proposed in this work. The proposed reconfigurable QRM-MLD MIMO detector is implemented using a Samsung 65 nm CMOS process. The experimental results show that our ASM-based QRM-MLD MIMO detector shows a maximum throughput of 288 Mbps with a normalized power efficiency of 10.18 Mbps/mW in the case of $4{\times}4$ MIMO with 64-QAM. Under time-varying channel conditions, the proposed reconfigurable MIMO detector also achieves average power savings of up to 35% while maintaining a required BER performance.

Cost-Driven Optimization of Defect-Avoidant Logic Mapping Strategies for Nanowire Reconfigurable Crossbar Architecture (Nanowire Reconfigurable Crossbar 구조를 위한 결함 회피형 로직 재할당 방식의 분석과 총 비용에 따른 최적화 방안)

  • Lee, Jong-Seok;Choi, Min-Su
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.5
    • /
    • pp.257-271
    • /
    • 2010
  • As the end of photolithographic integration era is approaching fast, numerous nanoscale devices and systems based on novel nanoscale materials and assembly techniques are recently emerging. Notably, various reconfigurable architectures with considerable promise have been proposed based on nanowire crossbar structure as the primitive building block. Unfortunately, high-density sys-tems consisting of nanometer-scale elements are likely to have numerous physical imperfections and variations. Therefore, defect-tolerance is considered as one of the most exigent challenges in nanowire crossbar systems. In this work, three different defect-avoidant logic mapping algorithms to circumvent defective crosspoints in nanowire reconfigurable crossbar systems are evaluated in terms of various performance metrics. Then, a novel method to find the most cost-effective repair solution is demonstrated by considering all major repair parameters and quantitatively estimating the performance and cost-effectiveness of each algorithm. Extensive parametric simulation results are reported to compare overall repair costs of the repair algorithms under consideration and to validate the cost-driven repair optimization technique.

Transformer-Reuse Reconfigurable Synchronous Boost Converter with 20 mV MPPT-Input, 88% Efficiency, and 37 mW Maximum Output Power

  • Im, Jong-Pil;Moon, Seung-Eon;Lyuh, Chun-Gi
    • ETRI Journal
    • /
    • v.38 no.4
    • /
    • pp.654-664
    • /
    • 2016
  • This paper presents a transformer-based reconfigurable synchronous boost converter. The lowest maximum power point tracking (MPPT)-input voltage and peak efficiency of the proposed boost converter, 20 mV and 88%, respectively, were achieved using a reconfigurable synchronous structure, static power loss minimization design, and efficiency boost mode change (EBMC) method. The proposed reconfigurable synchronous structure for high efficiency enables both a transformer-based self-startup mode (TSM) and an inductor-based MPPT mode (IMM) with a power PMOS switch instead of a diode. In addition, a static power loss minimization design, which was developed to reduce the leakage current of the native switch and quiescent current of the control blocks, enables a low input operation voltage. Furthermore, the proposed EBMC method is able to change the TSM into IMM with no additional time or energy loss. A prototype chip was implemented using a $0.18-{\mu}m$ CMOS process, and operates within an input voltage range of 9 mV to 1 V, and an output voltage range of 1 V to 3.3 V, and provides a maximum output power of 37 mW.

A Fully-Integrated Penta-Band Tx Reconfigurable Power Amplifier with SOI CMOS Switches for Mobile Handset Applications

  • Kim, Unha;Kang, Sungyoon;Kim, Junghyun;Kwon, Youngwoo
    • ETRI Journal
    • /
    • v.36 no.2
    • /
    • pp.214-223
    • /
    • 2014
  • A fully-integrated penta-band reconfigurable power amplifier (PA) is developed for handset Tx applications. The output structure of the proposed PA is composed of the fixed output matching network, power and frequency reconfigurable networks, and post-PA distribution switches. In this work, a new reconfiguration technique is proposed for a specific band requiring power and frequency reconfiguration simultaneously. The design parameters for the proposed reconfiguration are newly derived and applied to the PA. To reduce the module size, the switches of reconfigurable output networks and post-PA switches are integrated into a single IC using a $0.18{\mu}m$ silicon-on-insulator CMOS process, and a compact size of $5mm{\times}5mm$ is thus achieved. The fabricated W-CDMA PA module shows adjacent channel leakage ratios better than -39 dBc up to the rated linear power and power-added efficiencies of higher than around 38% at the maximum linear output power over all the bands. Efficiency degradation is limited to 2.5% to 3% compared to the single-band reference PA.

Evolutionary Design of Image Filter Using The Celoxica Rc1000 Board

  • Wang, Jin;Jung, Je-Kyo;Lee, Chong-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1355-1360
    • /
    • 2005
  • In this paper, we approach the problem of image filter design automation using a kind of intrinsic evolvable hardware architecture. For the purpose of implementing the intrinsic evolution process in a common FPGA chip and evolving a complicated digital circuit system-image filter, the design automation system employs the reconfigurable circuit architecture as the reconfigurable component of the EHW. The reconfigurable circuit architecture is inspired by the Cartesian Genetic Programming and the functional level evolution. To increase the speed of the hardware evolution, the whole evolvable hardware system which consists of evolution algorithm unit, fitness value calculation unit and reconfigurable unit are implemented by a commercial FPGA chip. The Celoxica RC1000 card which is fitted with a Xilinx Virtex xcv2000E FPGA chip is employed as the experiment platform. As the result, we conclude the terms of the synthesis report of the image filter design automation system and hardware evolution speed in the Celoxica RC1000 card. The evolved image filter is also compared with the conventional image filter form the point of filtered image quality.

  • PDF

Transmission Characteristics of Curved Reconfigurable Frequency Selective Structure (곡면 재구성 주파수 선택막의 투과특성)

  • Lee, In-Gon;Hong, Ic-Pyo;Chun, Heoung-Jae;Park, Yong-Bae;Kim, Yoon-Jae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.311-317
    • /
    • 2014
  • In this paper, the flexible and reconfigurable frequency selective surface for C-band was designed using patch array and grid structure for radome and other curved surface applications. Frequency reconfigurability was obtained by varying the capacitance of varactor diode and flexibility is implemented by using flexible PCB. For the validity of the proposed structure, we fabricated the flexible and reconfigurable frequency selective structure and measured the frequency reconfigurability for different bias voltages and different curvature surfaces from the optimized design parameters. From the measurement results, we know that the proposed structure has the wideband reconfigurable frequency bandwidth of 6.05-7.08GHz. We can apply this proposed structure to the curved surface like as radome of aircraft or warship.