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This paper presents a low-complexity channel-adaptive 
reconfigurable 4 × 4 QR-decomposition and M-algorithm-
based maximum likelihood detection (QRM-MLD) 
multiple-input and multiple-output (MIMO) detector. 
Two novel design approaches for low-power QRM-MLD 
hardware are proposed in this work. First, an 
approximate survivor metric (ASM) generation technique 
is presented to achieve considerable computational 
complexity reduction with minor BER degradation. A 
reconfigurable QRM-MLD MIMO detector (where the 
M-value represents the number of survival branches in a 
stage) for dynamically adapting to time-varying channels 
is also proposed in this work. The proposed reconfigurable 
QRM-MLD MIMO detector is implemented using a 
Samsung 65 nm CMOS process. The experimental results 
show that our ASM-based QRM-MLD MIMO detector 
shows a maximum throughput of 288 Mbps with a 
normalized power efficiency of 10.18 Mbps/mW in the 
case of 4 × 4 MIMO with 64-QAM. Under time-varying 
channel conditions, the proposed reconfigurable MIMO 
detector also achieves average power savings of up to 35% 
while maintaining a required BER performance. 
 

Keywords: MIMO detection, QRM-MLD, 
reconfigurable architecture, maximum likelihood 
detection. 
                                                               

Manuscript received Feb. 24, 2015; revised Sept. 17, 2015; accepted Sept. 30, 2015 
This work was supported by the National Research Foundation of Korea (NRF) grant 

funded by the Korea government (MSIP) (No. 2012R1A2A2A01012471 and No. 2011-
0020128) 

Iput Heri Kurniawan (iputkurniawan@gmail.com), Ji-Hwan Yoon (improma@korea.ac.kr), 
Jong-Kook Kim (jongkook@korea.ac.kr), and Jongsun Park (corresponding author, 
jongsun@korea.ac.kr) are with the School of Electrical Engineering, Korea University, Seoul, 
Rep. of Korea. 

I. Introduction 

Due to higher spectral efficiency with improved link 
reliability [1], spatial multiplexing multiple-input and multiple-
output (MIMO) technology has been widely adopted in 
wireless standards such as IEEE 802.11n, IEEE 802.16e, IEEE 
802.16m, and Long-Term Evolution.  

In the MIMO detector, maximum likelihood (ML) decoding 
[2] has been considered as one of the best solutions for spatial 
multiplexing, and it is depth-first approaches such as sphere 
decoding that show near-optimal performances [3]. However, 
since a sphere decoding approach involves iteratively checking 
all possible selections of a detected vector, the complexity of 
the worst-case scenario exponentially increases with an 
increasing MIMO channel-matrix size, which results in huge 
hardware overhead with irregular throughput [4]. For low-
complexity ML detection, breadth-first approaches, such as  
M-algorithm; QR-decomposition and M-algorithm-based 
maximum likelihood detection (QRM-MLD); and K-Best 
algorithm with a fixed M (or K)-value [5], [6], have been 
chosen as a reasonable alternative to relieve the hardware 
burden with guaranteed fixed throughput. However, both the 
computational complexity and the resulting power 
consumption of a breadth-first approach are still large, since the 
complexity of child expansion and sorting schemes 
exponentially increases as the constellation order or dimension 
of the MIMO channel-matrix increases [7]–[9]. 

This paper presents a low-power channel-adaptive hardware 
architecture for a QRM-MLD MIMO detector. First, a 
simplified branch metric computation approach in QRM-MLD 
is presented. Consequently, the computational complexity is 
significantly reduced without seriously sacrificing the bit error 
rate (BER) performance.  
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As a second approach, a channel-adaptive QRM-MLD 
MIMO detector with reconfigurable M-value is also presented. 
The hardware implementation results also show that 
considerable power savings can be achieved by efficiently 
trading off the detection performance.  

II. QRM-MLD MIMO Detection 

1. MIMO System Model 

Let us consider a spatial multiplexing MIMO system with  
Nt transmitting and Nr receiving antennas. The equivalent 
baseband model of the complex MIMO system is described as 
follows: 

y = Hx + n,                   (1) 

where y is an Nr × 1 complex-valued received symbol vector, x 
is an Nt × 1 complex-valued transmit vector, H denotes an   
Nr × Nt complex-valued channel response matrix, and n 
represents independent and identically distributed (i.i.d.) 
complex Gaussian noise, of size Nr × 1 and zero mean. To find 
an optimal solution for spatial multiplexing, the basic operation 
of the ML MIMO detection is to minimize the norm of the 
receiver noise as follows: 

t

2

Ω
arg min ,

N
 

x
s y Hx               (2) 

where Ω is the set of all complex elements in the constellation 
and tN denotes all the possible Nt-dimensional transmitted 
symbol vectors. 

2. Conventional QRM-MLD Approach 

To transform the optimization problem of (2) into a tree-
search problem, a QR decomposition (QRD) of the channel 
response matrix H is introduced as follows: 

H = QR,                     (3) 

where Q is an Nr × Nt unitary matrix and R is an Nt × Nt upper 
triangular complex matrix. By multiplying both sides of (1) by 
QH (the Hermitian conjugate of Q), the system model can be 
rewritten as 

z = QHy = Rx + w,               (4) 

where w = QHn. With the upper triangular property of matrix 
R, the norm of the receiver noise in (2) can be reformulated to 
an accumulated branch metric as (5) below, and the process  
to find an optimal solution, s, in (2), becomes a tree-search 
problem, where the maximum level of a node in the tree 
structure is Nt. 
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Fig. 1. Example of mapping QRM-MLD algorithm to tree structure
(16-QAM modulation (n(Ω) = 16), M = 4, Nt = 4). 

5 3 2 4 Stage 1

: Survival branch with a branch metric, m. 

A

8

8 7 

… … 7… …… 

… … … 

… …

Stage 2

… … … 

… …

3 3 42

… … …

…

…

24

… … 

2 2 

… …… 

… … …

Stage 3

Stage 4

m

4 2 3 45 87 4 3 6 7 4 5 56 6

m

2 

5 

8 

10 

3 5 4 

7 7 8

9 10 12

13 12 14

: Pruned branch with a branch metric, m. 

: Node with an accumulated branch metric, A. 

 
 
where i and j represent the index of the current stage and that of 
the previous stages in the tree structure, respectively; ri,j denotes 
the (i, j)th element of matrix R; and xj is the jth element of 
vector x. In the ith stage, the partial Euclidean distance (PED) 
calculation is formulated in a recursive manner as 

PEDi(x
(i)) = PEDi–1(x

(i–1)) + |ei(x
(i))|2,            (6) 
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Here, PEDi(x
(i)) is a PED in the ith stage with PED0(x

(0)) = 0; 

t t t

( )
1 2, , ,i

N i N i Nx x x       x denotes a partial vector symbol 

in the ith stage; and |ei(x
(i))|2 is the distance increment between 

two successive nodes in the tree structure. The tree structure–
based representation of (6) to (7) is illustrated in Fig. 1, where 
the modulation order is n(Ω) = 16 and Nt = 4.  

III. Proposed QRM-MLD MIMO Detection 
Architecture Based on Branch Metric 
Computation 

In this section, an approximate survivor metric (ASM) 
generation approach is presented, which can be effectively 
used to reduce the computational complexity of the QRM-
MLD MIMO detector. The hardware implementation results of 
the proposed ASM-based MIMO detector are also presented to 
show the power consumption reduction and silicon area. 

1. ASM Generation 

The basic idea of the proposed ASM generation is that the 
absolute values of the real and imaginary parts can be 
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separately computed and sorted to find survival branches. In 
the following, (8) and (9) denote the magnitudes of the real and 
imaginary parts of the approximate branch metric based on the 
simplified norm algorithm [5], respectively:  
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|ei(x
(i))| = Re{ei(x

(i))} + Im{ei(x
(i))},            (10) 

PEDi(x
(i)) = PEDi–1(x

(i–1)) + |ei(x
(i))|,               (11) 

where PED0(x
(0)) = 0. In the conventional simplified norm 

algorithm [5], separate real and imaginary parts are added to 
calculate the approximate distance increment of the ith stage by 
(10), and the PED of the ith stage is computed using (11). To 
reduce the computational complexity of the conventional 
QRM-MLD approaches [4], [6], advanced approaches [7]–[9] 
iteratively find M minimum ABMs. First, the M  real and 

M  imaginary parts in (8) and (9) are calculated. They are 
then sorted in ascending order. After this, the possible 
candidates for the nth minimum ABM in (11) are found by 
combining minimum real and imaginary parts. To find the nth 
minimum ABM among the candidates, a large number of 
comparisons are needed, which means that a huge number of 
comparison operations are required to find all of the M 
minimum ABMs in the tree structure. To further reduce the 
number of comparisons, the proposed approach finds M 
minimum ABMs by judiciously combining M  minimum 
real and M  minimum imaginary parts of results in (8) and 
(9). In the proposed approach, only M  minimum real and 

M  minimum imaginary parts in (8) and (9) are selected 
from the sorted M  real and M  imaginary parts in (8) 
and (9). Then, M minimum ABMs are obtained by simply 
combining M  minimum real and M  minimum 
imaginary parts in (8) and (9). In the first stage of the proposed 
ASM generation process, by using (12) and (13), only the 

M  smallest real and imaginary parts are searched from 
M  real and M  imaginary parts in (8) and (9), 

respectively. 
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where l, α, 1, ... , , 2.M i    In the equations, 
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denote the lth smallest magnitude value from M  real and  

M  imaginary parts in the first stage, respectively; C denotes 

the set { ( ) 1,  n ( ) n +3, … , –1, … , ( ) n –1}, 

where ( ) n  is the square root of an arbitrary constellation 

of order n(Ω); Re{e1(x
(1))}<l> and Im{e1(x

(1))}<l> denote the lth 
smallest partial (real and imaginary) value ((8) and (9)) in the 
first stage; and |SM(1) <α, β>| denotes the proposed survivor 
metric (SM) of a survivor path in the first stage, which is 
generated by combining the αth smallest real part and the βth 
smallest imaginary part in (8) and (9). Furthermore, Re{SM(i)} 
and Im{SM(i)} denote the real and imaginary parts of the SM in 
the ith stage, respectively, where i ≥ 2; ASMi <α, β> (x(i)) is the 
proposed ASM of a survivor path in the ith stage, where i ≥ 2, 
which is the descendant of the SM in the first stage, |SM(1)    
<α, β>|. Assuming Nt = 4, the QRM-MLD process based on 
the proposed ASM generations is illustrated in Fig. 2. First, 
separate real and imaginary parts in (8) and (9) are computed at 
the beginning of stage 1. After computing the real part in (8)   

for all the possible four ( ( ) 4) n  cases, two survival 

 

 

Fig. 2. Example of proposed branch metric computations for case 
M = 4, n(Ω) = 16, and Nt = 4. 
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Fig. 3. Computational complexity comparisons for 4 × 4 MIMO
detectors. 
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branches ( 2)M   with the smallest partial (real) SMs  

(Re{e1(x
(1))}<2>

 = 2, Re{e1(x
(1))}<1> = 1) are selected, which is 

expressed in (12). In the second part of stage 1 (imaginary), 
(13) is performed in a similar manner with (12). Then, the real 
and imaginary parts are combined (14) for generating the four 
smallest SMs of the first stage, where the results are |SM(1)    

<2, 1>| = 3, |SM(1) <2, 2>| = 5, |SM(1) <1, 1>| = 2, and |SM(1)   

<1, 2>| = 4. Here, only M addition operations are needed to  

generate M number of SMs by combining M  real and  

M  imaginary parts. Please note that M number of SMs can 
be generated without any sorting operations for the ABMs. In 
the second stage, for each SM of the first stage, only       
the minimum real (Re{SM(2)}) and minimum imaginary 

(Im{SM(2)}) ABMs are selected among ( )n  children, 

which is presented in (15) and (16) for real and imaginary parts 
of ABMs, respectively. After the second stage, four (M = 4) 
ASMs (ASM2 <2, 1>(x(2)) = 6, ASM2 <2, 2>(x(2)) = 6, ASM2 

<2, 2>(x(2)) = 8, and ASM2 <1, 1> (x(2)) = 5) are generated, and 
a similar process is repeated for each remaining stage (stages 
three and four). As a result, the minimum ASM, ASM4     
<1, 1>(x(4)) (= 2 + 3 + 3 + 2 = 10), is selected as an optimal 
solution, s.  

In terms of computational complexity, the proposed ASM 
generation–based 4 × 4 QRM-MLD is compared with a 
conventional 4 × 4 QRM-MLD [6], [7] (see Fig. 3). Compared 
to [6], the number of multiplications and additions with the L1-
norm-based approaches (the proposed and [7]) are significantly 
reduced. Figure 4 shows the BER comparisons between the 
proposed approach and the conventional breadth-first-search-
based ML MIMO detectors [6], [7], [9], [10], with 64-QAM 
modulation using a fixed-point simulation. For all the plots, the 
input bit-width (real and imaginary parts of z and matrix R) is 

 

Fig. 4. BER comparisons among proposed approach and 
conventional breadth-first-search-based ML MIMO
detectors [6], [7], [9], [10]. 
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set to 15 bit, where integer and fractional parts are 6 bit and   
9 bit, respectively. The results in Fig. 4 show that the proposed 
architecture demonstrates a comparable BER with the 
conventional approach (with K = 10) [7], when M = 16. For  
iso-BER comparison, if the proposed architecture (M = 16) is 
compared with the conventional one (with K = 10) [7] in terms 
of computational complexity, then the proposed approach 
shows 25% savings on the number of multiplications with 
increasing number of comparisons and additions. The BER 
performances for QPSK and 16-QAM are also presented in 
Fig. 4. 

2. QRM-MLD Architecture Based on ASM Generation 

Figure 5 illustrates the proposed QRM-MLD MIMO 
detector architecture (M = 25) based on ASM generation with  
4 × 4 MIMO multiplexing with 64-QAM constellation. A 
timing diagram of the proposed architecture is illustrated in  
Fig. 6. In stage 1 (i = 1), to compute Re{ei(x

(i))} and Im{ei(x
(i))} 

shown in (8) and (9), respectively, a constant multiplier 
(MUL_0), PED I, and PED II (PED_II_0) in Fig. 5 are first 
operating. The outputs of MUL_0 are r4,4·k, where k is selected 
from the set {a, b, c, d}. Here, a, b, c, and d are four different 
magnitudes of the real and imaginary parts for 64-QAM 
symbols [11]. Since b, c, and d are multiples of constant a [11], 
the multiplier array (MA) can be simply implemented using 
adders and shifters, as presented in Fig. 7(a). PED I performs  
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Fig. 5. Overall architecture of proposed QRM-MLD MIMO
detector. 
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the following y4–r4,4·k operations with eight real and eight 
imaginary cases, which is shown in Fig. 7(b). Here, since the 
diagonal component of matrix R, r4,4, is a real number [12], 
MUL_0, outputs (r4,4·k) can be shared for both of the real and 
imaginary parts in PED I. In PED_II_0, only muxes and 
absolute (ABS) value computation modules are operating in 
stage 1, as shown in Fig. 7(c); the subtractor (SUB) modules 
bypass the eight real and eight imaginary PED I outputs. Using 
the eight real and eight imaginary outputs from PED_II_0, 
SORF_0 and SORF_1 inside the FMIN array sort five real and 
five imaginary outputs in ascending order. After the sorting 
operation is done in two clock cycles, the outputs of SORF_0 
and SORF_1 are stored in the ordered path register. Finally, the 
separate part merging adders (SMA) generate 25 cases of 
|SM(1) <α, β>| in (14) by adding all the combinations of five 
real (Re{e1(x

(1))}<α>) and five imaginary (Im{e1(x
(1))}<β>) parts, 

where α, β = 1, 2, … , 5.  
In stage 2 (i = 2), three multipliers (MUL_0 to MUL_2), 

PED I, and all the PED II modules (PED_II_0 to PED_II_4) 
are operating to compute Re{SM(3)} and Im{SM(3)} 
according to (15) and (16), respectively. At first, r3,3·Re{x3} and 
r3,3·Im{x3} are calculated by MUL_0; Re{r3,4·x4} and 
Im{r3,4·x4} are computed by MUL_1 and MUL_2, respectively. 
Then, eight cases of Re{y3}–r3,3·Re{x3} and Im{y3}–
r3,3·Im{x3} are computed in PED I, and the outputs of PED I 
and real/imaginary part generator are sent to five PED IIs. Here, 
real and imaginary components of x4 are selected from the set 
{–a, –b, –c, –d, a, b, c, d} based on the value saved in the 
ordered path register, and five cases of Re{r3,4·x4} are distributed 
 

 

Fig. 6. Timing diagram of proposed QRM-MLD MIMO detector. 
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to each PED II. Similar processes are repeatedly performed in 
the PED II array by varying x4 to generate different Re{r3,4·x4} 
values for five clock cycles, as illustrated in the detailed timing 
diagram (Fig. 6). 

In the adder array, branch metrics accumulation (BMA) units 
add the branch metrics of the previous and current stages for 
deciding the output vector of the final stage. The sorted branch 
metrics of stage 2 are stored in the path register to prepare stage 3. 

In stage 3 (i = 3), the overall computation process is similar 
to that of stage 2, except for the operations in the MA specified 
in (11) and (12). In stage 4 (i = 4), all seven MUL modules 
(seven constant multipliers to compute r1,1·Re{x1}, Re{r1,2·x2}, 
Im{r1,2·x2}, Re{r1,3·x3}, Im{r1,3·x3}, Re{r1,4·x4}, and Im{r1,4·x4} 
in MA and the whole PED II are operating. Finally, the hard 
decision module is used to sort the ASMs in (17) for an output 
decision. 

In the proposed QRM-MLD detector, the operating modules 
at each stage are specified in Table 1. The non-active gray-
colored parts shown in Fig. 7(c) and Fig. 8 can be simply 
turned off using the turning-off gate logic (TOGL) shown in 
Fig. 9 [13]. In the TOGL shown in Fig. 9, both of the pull-up 
(PMOS) and pull-down (NMOS) transistors are being used 
together. When φ is set to one, the pull-down NMOS transistor 
forces the outputs of the turned-off modules to zero to save 
dynamic power consumption and to correct functionality. The 
φ signals are generated from control logic to turn-off the non-
active gray-colored parts in Figs. 7(c) and 8. 

The proposed QRM-MLD-based 4 × 4 MIMO detectors are 
implemented using a Samsung 65 nm CMOS standard library. 

 

Table 1. Specifications of active modules at each stage in proposed 
MIMO detector. 

Stage 1 2 3 4 

MUL_0 Active 

MUL_1 - Active 

MUL_2 - Active 

MUL_3 - Active 

MUL_4 - Active 

MUL_5 - Active 

MA 

MUL_6 - Active 

PED II array (index) 0 0, 1, 2, 3, 4 

SORF 
(mode) 

Sorter FMIN 
FMIN 
array FMIN 

(index) 
- 0, 1, 2, 3, 4, 5, 6, 7 

Adder array All SMA All SMA and BMA 

Hard decision - Active 

 

 

Fig. 7. Submodules of proposed QRM-MLD MIMO detector: (a) 
constant multiplier, (b) PED I, and (c) PED II module and 
turn-off pattern of subtractors (SUB), adders (ADD0, 
ADD1) in PED II. 
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* Operation pattern of SUB, ADD modules 

Stage SUB ADDER0 ADDER1 
1 By passing Turned-off 
2 Turned-on Turned-off 
3 Turned-on Turned-on Turned-off 
4 Turned-on Turned-on 

 
The power consumption is simulated with a gate-level netlist 
using Primetime-PX [14] with an operation frequency of   
100 MHz, 1.2 V supply voltage. One hundred thousand 
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Fig. 8. SORF module in proposed architecture. 
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Table 2. Hardware comparison of 4 × 4 MIMO detectors. 

Architecture [3] [7] [8] [9] [15] 
This 
work

Process (nm) 65 130 130 65 130 65 

Algorithm 
Sphere 

decoding 
K-Best K-Best K-Best 

Modified

K-Best
QRM-
MLD

Modulation 64 64 64 64 64 64 

K = M 64 10 64 12 10 25 

Area 

(gate count) 
1,760K 114K 280K 320K 340K 103K

Oper. freq./scaled to 
65 nm (MHz) 

158 
282/ 

564 

270/ 

540 
641 

417/ 

834 
278

Power @Oper. 

freq. (mW) 
165 135 94 165 1,700 28.3

Power*@100 MHz 
/scaled to 65 nm 

(mW) 
104.4† 

47.9/ 

23.9 

34.8/ 

17.4 
25.74 

407.7/

203.9 
10.177†

Max. throughput 

/scaled to 65 nm 

(Mbps) 

100 
675/ 

1,350 

8.57/ 

17.14 
1282 

1,000/

2,000 
288

* For the power consumption with technology scaling, constant voltage scaling is assumed [16].

† Power consumption is estimated using the gate-level netlist simulation. 

 
random input test vectors of the matrix R and QHy are used for 
measuring power. According to the numerical results, the 
proposed QRM-MLD MIMO detector shows a maximum 
throughput of 288 Mbps with a normalized power efficiency of 
10.18 Mbps/mW. Table 2 shows the hardware comparisons  

of various 4 × 4 MIMO detectors in the literature. In the 
comparisons, the proposed architecture shows the lowest 
power (100 MHz, scaled to 65 nm) and smallest area among 
the other works. In terms of detection performance in Fig. 4, 
the proposed approach with M = 25 shows comparable or even 
better BER simulation results compared to the conventional  
K-best approach with K = 10 [7]. Compared to [15], the 
proposed approach with M = 25 shows slightly worse but 
comparable results in the BER simulation. 

IV. Low-Power Channel-Adaptive Reconfigurable 
QRM-MLD MIMO Detector 

In this section, a low-power channel-adaptive QRM-MLD 
MIMO detector with reconfigurable M-value is proposed to 
further reduce the detector power consumption. Since the BER 
performance of a QRM-MLD MIMO detector is quite 
dependent on the selection of the M-value, the M-value is 
usually decided according to the worst-case channel. However, 
in most cases, the wireless channel conditions always fluctuate 
over time, and they are monitored and estimated in the 
communication system [17]. Based on this interesting 
observation, the proposed reconfigurable MIMO detector 
architecture can dynamically change the M-value depending on 
channel conditions to more aggressively reduce the power 
computation while satisfying BER performance requirements. 

1. Hardware Architecture of Proposed Reconfigurable 
QRM-MLD-Based MIMO Detector 

In the QRM-MLD MIMO detector architecture presented in 

the previous section, all of the modules in the PED II array, 

FMIN array, and Adder array are operating in parallel, as 

displayed in Fig. 6. When 5,M   the reconfigurable 

architecture of Fig. 10(a) is operating in the same way as the 

one shown in Fig. 5. When the M -value becomes smaller 

(4, 3, 2, 1), some parts of the detector are not needed, and those 

unnecessary parts with smaller M can be dynamically turned 

off to save computation energy. For example, when M is 

reduced to 16 ( 4),M   the computation process of stage 1 

is the same with the case of 5.M   However, only four 

elements from the set {–a, –b, –c, –d, a, b, c, d} are selected as 

the survivor metrics x4 for both the real and imaginary parts at 

the end of stage 1. Since the Re{r3,4·x4} and Im{r3,4·x4} results 

are sent to four PED IIs in stage 2, only four paths are needed 

among five parallel paths. To turn off the unnecessary data path, 

the TOGL shown in  Fig. 9 is used at the input of the PED II 

array. As illustrated in Fig. 10(b), while 5,M   all the data 

paths are operating. When M is reduced to nine ( 3)M  , 
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Fig. 10. Proposed reconfigurable QRM-MLD architecture: (a)

block diagram of turning-off gating path and (b) turn-off 

pattern of turning-off gate with variable M -value. 
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only three paths are working, and the other two data paths are 

turned off using TOGL3 and TOGL4. Finally, when M = 1 

( 1),M   only one path of hardware (TOGL0) is operating. 

As shown in the proposed reconfigurable MIMO detector, 

once the M -value is decided, the corresponding number of 

PEDs are operating according to Fig. 10(a). Here, the proposed 

reconfigurable QRM-MLD MIMO detector is operating by the 

same pattern with Fig. 6, which means that the architecture 

shows a fixed throughput regardless of the M -value. In the 

M  number of PEDs, M  number of real and imaginary 

ABMs are simultaneously working, and the results are combined 

to generate M number of survivor metrics ASMi<α, β>(x(i)) for 

the ith stage, as shown in (17). The control logics like the 

enable signal generator and the reconfigurable scheduler are  

Table 3. Comparison between fixed and reconfigurable architectures.

Architecture 
Process 

(nm) 

Area  

(gate count) 
Power consumption (mW) @ 
Max. frequency (278 MHz)

5M   32.80 

4M   27.25 

3M   21.85 

2M   16.99 

Reconfigurable

( 1 5)M  
65 114K 

1M   12.37 

 

 

also implemented in the proposed reconfigurable QRM-MLD 
MIMO detector. The hardware area and power consumption 
comparison of the proposed reconfigurable architecture and the 
original architecture with fixed M ( 5)M   are presented in 
Table 3. According to our simulation results with reconfigurable 
MIMO detector, the area overhead due to the proposed turning-
off scheme and control logics is 9.82% (11,000 gate count), and 
power consumption overhead is 13.95% (4.5 mW) compared to 
the original design without turning-off modules. 

2. Numerical Result of Proposed Reconfigurable QRM-
MLD-Based MIMO Detector 

The BER performance of the proposed reconfigurable 4 × 4, 
64-QAM QRM-MLD-based MIMO detector is estimated with 
the following simulation setup: 
 QRD for the QRM-MLD-based MIMO detection is based 

on the Gram–Schmidt algorithm [12]. 
 The minimum accumulated branch metric is decided based 

on a hard decision algorithm. 
 As a noise model, additive white Gaussian complex random 

noise is used. 
Figure 11(a) illustrates the BER performance comparison of 

the proposed QRM-MLD MIMO detection algorithm with 
variable .M  Since the proposed MIMO detector shows a 
wide range of BER performance with varying M -value, 
the proposed architecture can be efficiently adapted under 
varying channel conditions. Figure 11(b) also shows the power 
consumption and energy efficiency (pJ/bit) of the proposed 
reconfigurable detector with different M -value at the 
maximum operating frequency of 278 MHz. As shown in the 
figure, the power savings range from 17% to 62% when M  
changes. 

V. Experimental Results under Time-Varying Channel 
Conditions 

In this section, the proposed reconfigurable QRM-MLD- 
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Fig. 11. Experimental results of proposed variable M QRM-MLD 
architecture: (a) fixed-point BER performance with 64-
QAM and (b) power consumptions (mW) and energy
efficiencies with variable M (pJ/bit). 
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based MIMO detector can be effectively used to save power 
while maintaining the required BER performance under two 
varying channel conditions. The following gives a detailed 
description. 

1. M -Value Decision Process 

Figure 12(a) illustrates the M -value decision process. 
The M -value decision process under varying channel 
conditions is displayed in the dotted box. Initially, the SNR of 
the target channel is estimated. To adaptively update the 

M -value according to the estimated SNR, the M -value 
generator first locates the SNR range. Based on the located SNR 
range, the best M -value is decided using a M  mapping 
table. The SNR to M  mapping table is made off-line. 

2. SNR Estimation Based on M-Selection Process in 
Reconfigurable MIMO Detection 

For the proposed reconfigurable MIMO detector to be  

 

 

Fig. 12. (a) M -value decision process of proposed reconfigurable

QRM-MLD-based MIMO detector and (b) timing 

diagram of proposed reconfigurable MIMO detector. 
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efficiently used in the communication system with time-
varying channel, a timing diagram including the M-selection 
process is illustrated in Fig. 12(b). A MIMO detection process 
is performed on the N data symbols (D0, D1, … , DN–1). Since 
both operations are using preamble data, the SNR estimation 
[18] followed by M-selection operation (Latency: TSNR + TM) 
can be processed in parallel with the first H-matrix estimation 
and QRD process [19] (Latency: TH,R = TH-matrix + TQRD), as 
presented in Fig. 12(b). Here, for the seamless real-time 
operation of the proposed reconfigurable MIMO detector, the 
timing constraint of (18) has to be strictly satisfied, where  
TFrame duration is the preamble period and NH,R denotes the number 
of H-matrix estimations & QRD processes during a frame 
duration, as shown in Fig. 12(b). 

TFrame duration ≥ TPreprocessing + TMIMO,                  (18) 

TPreprocessing ≥ max(TH,R, TSNR + TM) + (NH,R – 1)TH,R.   (19) 

In (19), since TSNR estimation is generally larger than TH,R [20], [21], 
TPreprocessing becomes TSNR estimation + TM decision. When TFrame duration is 
5.0 ms following standard [11], 3.0 ms [22] is enough to finish 
the MIMO detection process (TMIMO) of data symbols D0, D1, 
… , DN–1, which include every unit symbol of a subchannel 
inside downlink durations. In this scenario, TSNR estimation + TM 
equals 18.5 μs, while TH,R equals about 1.987 μs [20], [21]; 
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Fig. 13. Simulation results of proposed and conventional QRM-MLD architectures for time-varying Rayleigh channel: (a) Rayleigh

channel, (b) BER comparison, (c) M -value selection for varying time, and (d) power consumption with varying time. 
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NH,R is estimated to be equal to four  Frame duration C ,T T      

where the coherence time TC is equal to 1.1 ms assuming the 
worst-case scenario in [22]. Since TPreprocessing is approximately 
26.448 μs, the timing constraint (18) is easily satisfied. The 
constraint is still met when TFrame duration is around 2.5 ms [11], 
since TMIMO reduces proportionately due to smaller number 
data symbols (D0, D1, … , DN–1). 

3. Experimental Results 

In this section, the dynamic reconfiguration of the proposed 
MIMO detector is demonstrated to trade off BER performance 
and power savings with an arbitrarily varying channel. The 
channel condition (Eb/N0) with time is modeled by a normally 
distributed random variable with typical standard deviation 
[23], and the detailed simulation specifications are as follows: 
■ For a 10 MHz channel bandwidth, the number of occupied 

subcarriers is 1,024 [11]. 
■ The frame duration time is set to 5 ms [11] and the simulation 

time is 3 s, which means the simulation covers 600 frames in 
total. 

■ The frame start preamble used to obtain the average SNR  

Table 4. Power savings compared to conventional fixed M-based 
architecture. 

Modeled channel Power saving (%) 

AWGN channel 35% 

Rayleigh fading channel with four numbers of 
fading and 6.4 Hz of Doppler frequency [25] 

32% 

 

 

estimate consists of a 32-symbol sequence generated by 

repeating a 16-symbol CAZAC sequence [11]. 
■ The acceptable lower bound of the constant BER value is 

decided to be 10–3 [24] for the whole range of the Eb/N0 in 
every frame duration. 

■ According to the average SNR estimate, the M -value is 

dynamically decided as the lowest M -value that can 
satisfy the BER constant (10–3). 
The proposed reconfigurable MIMO detector is simulated 

with an AWGN channel and Rayleigh fading channel, and the 
simulation results for the Rayleigh fading channel are presented  

in Fig. 13. In the proposed approach, the M -value can be 
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adaptively changing according to the channel conditions, 
which results in significant power consumption reduction, as 
shown in Fig. 13(d). Although the BER performance can be  

degraded due to the modified M -value, as illustrated in  
Fig. 13(b), it always satisfies the BER constraint of 10–3. One 
of the advantages of the proposed approach is that a reasonable 
trade-off between power consumption and BER performance 
can be dynamically achieved while satisfying the predecided 
BER constraint. Table 4 summarizes the power saving of the 
proposed architecture. 

VI. Conclusion 

In this paper, a low-power channel-adaptive reconfigurable 
QRM-MLD MIMO detector architecture is presented. The 
power optimization of the proposed MIMO detector is 
achieved by two novel approaches. First, an ASM generation is 
proposed by separating real and imaginary parts of the branch 
metric to reduce the computational complexity with a minor 
BER performance degradation. To further reduce the power 
consumption of the proposed ASM-based MIMO detector 
under time-varying channel conditions, second, a 
reconfigurable QRM-MLD approach with variable M is 
proposed to overcome the limitation of the conventional 
architecture with a fixed M. The proposed approach shows a 
reasonable trade-off between system performance and power 
savings with varying channel conditions. According to the 
experimental results from our implementation, the proposed 
reconfigurable MIMO detector achieves power savings of at 
least 32% with time-varying channel conditions while 
satisfying the BER performance requirement. The idea 
presented in this paper can assist in the design of MIMO 
detector algorithms and their implementation in low-power 
applications. 
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