• Title/Summary/Keyword: recommender

Search Result 526, Processing Time 0.031 seconds

CLASSIFICATION FUNCTIONS FOR EVALUATING THE PREDICTION PERFORMANCE IN COLLABORATIVE FILTERING RECOMMENDER SYSTEM

  • Lee, Seok-Jun;Lee, Hee-Choon;Chung, Young-Jun
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.439-450
    • /
    • 2010
  • In this paper, we propose a new idea to evaluate the prediction accuracy of user's preference generated by memory-based collaborative filtering algorithm before prediction process in the recommender system. Our analysis results show the possibility of a pre-evaluation before the prediction process of users' preference of item's transaction on the web. Classification functions proposed in this study generate a user's rating pattern under certain conditions. In this research, we test whether classification functions select users who have lower prediction or higher prediction performance under collaborative filtering recommendation approach. The statistical test results will be based on the differences of the prediction accuracy of each user group which are classified by classification functions using the generative probability of specific rating. The characteristics of rating patterns of classified users will also be presented.

A Study of User XQuery Pattern Method based Recommender System

  • Kim, Jin-Hong;Lee, Eun-Seok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.476-479
    • /
    • 2005
  • The information available on the Internet has become widely used, primarily due to the ability of Web based E-Commerce and M-Commerce Retrieval Engines to find useful information for users. However, present day Commerce Retrieval Engines are far from perfect because they return results based on simple user keyword matches without any regard for the concepts in which the user is interested. In this thesis, we design and evaluate a Recommender system for web context aware based information retrieval using user profiles. Also, we designed personalization framework in ubiquitous environment based both e-commerce and m-commerce and presented the interaction of user profile including User XQuery pattern in semantic web.

  • PDF

Auxiliary Stacked Denoising Autoencoder based Collaborative Filtering Recommendation

  • Mu, Ruihui;Zeng, Xiaoqin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2310-2332
    • /
    • 2020
  • In recent years, deep learning techniques have achieved tremendous successes in natural language processing, speech recognition and image processing. Collaborative filtering(CF) recommendation is one of widely used methods and has significant effects in implementing the new recommendation function, but it also has limitations in dealing with the problem of poor scalability, cold start and data sparsity, etc. Combining the traditional recommendation algorithm with the deep learning model has brought great opportunity for the construction of a new recommender system. In this paper, we propose a novel collaborative recommendation model based on auxiliary stacked denoising autoencoder(ASDAE), the model learns effective the preferences of users from auxiliary information. Firstly, we integrate auxiliary information with rating information. Then, we design a stacked denoising autoencoder based collaborative recommendation model to learn the preferences of users from auxiliary information and rating information. Finally, we conduct comprehensive experiments on three real datasets to compare our proposed model with state-of-the-art methods. Experimental results demonstrate that our proposed model is superior to other recommendation methods.

Addressing the New User Problem of Recommender Systems Based on Word Embedding Learning and Skip-gram Modelling

  • Shin, Su-Mi;Kim, Kyung-Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.7
    • /
    • pp.9-16
    • /
    • 2016
  • Collaborative filtering(CF) uses the purchase or item rating history of other users, but does not need additional properties or attributes of users and items. Hence CF is known th be the most successful recommendation technology. But conventional CF approach has some significant weakness, such as the new user problem. In this paper, we propose a approach using word embedding with skip-gram for learning distributed item representations. In particular, we show that this approach can be used to capture precise item for solving the "new user problem." The proposed approach has been tested on the Movielens databases. We compare the performance of the user based CF, item based CF and our approach by observing the change of recommendation results according to the different number of item rating information. The experimental results shows the improvement in our approach in measuring the precision applied to new user problem situations.

Deep Neural Network-Based Beauty Product Recommender (심층신경망 기반의 뷰티제품 추천시스템)

  • Song, Hee Seok
    • Journal of Information Technology Applications and Management
    • /
    • v.26 no.6
    • /
    • pp.89-101
    • /
    • 2019
  • Many researchers have been focused on designing beauty product recommendation system for a long time because of increased need of customers for personalized and customized recommendation in beauty product domain. In addition, as the application of the deep neural network technique becomes active recently, various collaborative filtering techniques based on the deep neural network have been introduced. In this context, this study proposes a deep neural network model suitable for beauty product recommendation by applying Neural Collaborative Filtering and Generalized Matrix Factorization (NCF + GMF) to beauty product recommendation. This study also provides an implementation of web API system to commercialize the proposed recommendation model. The overall performance of the NCF + GMF model was the best when the beauty product recommendation problem was defined as the estimation rating score problem and the binary classification problem. The NCF + GMF model showed also high performance in the top N recommendation.

Comparison of Performance between MLP and RNN Model to Predict Purchase Timing for Repurchase Product (반복 구매제품의 재구매시기 예측을 위한 다층퍼셉트론(MLP) 모형과 순환신경망(RNN) 모형의 성능비교)

  • Song, Hee Seok
    • Journal of Information Technology Applications and Management
    • /
    • v.24 no.1
    • /
    • pp.111-128
    • /
    • 2017
  • Existing studies for recommender have focused on recommending an appropriate item based on the customer preference. However, it has not yet been studied actively to recommend purchase timing for the repurchase product despite of its importance. This study aims to propose MLP and RNN models based on the only simple purchase history data to predict the timing of customer repurchase and compare performances in the perspective of prediction accuracy and quality. As an experiment result, RNN model showed outstanding performance compared to MLP model. The proposed model can be used to develop CRM system which can offer SMS or app based promotion to the customer at the right time. This model also can be used to increase sales for repurchase product business by balancing the level of order as well as inducing repurchase of customer.

Improvement of Item-Based Collaborative Filtering by Applying Each Customer's Purchase Patterns in Offline Shopping Malls (오프라인 쇼핑몰에서 고객의 과거 구매 패턴을 활용한 아이템 기반 협업필터링 성능 개선에 관한 연구)

  • Jeong, Seok Bong
    • Journal of Information Technology Applications and Management
    • /
    • v.24 no.4
    • /
    • pp.1-12
    • /
    • 2017
  • Item-based collaborative filtering (IBCF) is an important technology that is widely used in recommender system of online shopping malls. It uses historical information to compute item-item similarity and make predictions. However, in offline shopping each customer's purchasing pattern can be occurred continuously and repeatedly due to time and space constraints contrast to online shopping. Those facts can make IBCF to have limitations from being applied to offline shopping malls directly. In order to improve the quality of recommendations made by IBCF in offline shopping mall, we propose an ensemble approach that considers both item-item similarity of IBCF and each customer's purchasing patterns which are modeled by item networks. Our experimental results show that this approach produces recommendation results superior to those of existing works such as pure IBCF or bestseller approaches.

Improving Performance of Jaccard Coefficient for Collaborative Filtering

  • Lee, Soojung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.11
    • /
    • pp.121-126
    • /
    • 2016
  • In recommender systems based on collaborative filtering, measuring similarity is very critical for determining the range of recommenders. Data sparsity problem is fundamental in collaborative filtering systems, which is partly solved by Jaccard coefficient combined with traditional similarity measures. This study proposes a new coefficient for improving performance of Jaccard coefficient by compensating for its drawbacks. We conducted experiments using datasets of various characteristics for performance analysis. As a result of comparison between the proposed and the similarity metric of Pearson correlation widely used up to date, it is found that the two metrics yielded competitive performance on a dense dataset while the proposed showed much better performance on a sparser dataset. Also, the result of comparing the proposed with Jaccard coefficient showed that the proposed yielded far better performance as the dataset is denser. Overall, the proposed coefficient demonstrated the best prediction and recommendation performance among the experimented metrics.

Toward Trustworthy Social Network Services: A Robust Design of Recommender Systems

  • Noh, Giseop;Oh, Hayoung;Lee, Kyu-haeng;Kim, Chong-kwon
    • Journal of Communications and Networks
    • /
    • v.17 no.2
    • /
    • pp.145-156
    • /
    • 2015
  • In recent years, electronic commerce and online social networks (OSNs) have experienced fast growth, and as a result, recommendation systems (RSs) have become extremely common. Accuracy and robustness are important performance indexes that characterize customized information or suggestions provided by RSs. However, nefarious users may be present, and they can distort information within the RSs by creating fake identities (Sybils). Although prior research has attempted to mitigate the negative impact of Sybils, the presence of these fake identities remains an unsolved problem. In this paper, we introduce a new weighted link analysis and influence level for RSs resistant to Sybil attacks. Our approach is validated through simulations of a broad range of attacks, and it is found to outperform other state-of-the-art recommendation methods in terms of both accuracy and robustness.

The Effect of Co-rating on the Recommender System of User Base

  • Lee, Hee-Choon;Lee, Seok-Jun;Chung, Young-Jun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.3
    • /
    • pp.775-784
    • /
    • 2006
  • This study is to investigate the effect of the number of co-rated users to the MAE. User based collaborative algorithm generally uses similarity weight to compute the relation of active user and other users. The original estimation algorithm of the GroupLens used the Pearson's correlation coefficient, soon after other researchers used various weighting. The Pearson’s correlation coefficient and Vector similarity, which is used in the field of information retrieval, are commonly used to the estimation algorithm. In prediction, we analyze the effect of the number of co-rated users on the user based recommender system.

  • PDF