• Title/Summary/Keyword: recommender

Search Result 526, Processing Time 0.027 seconds

Harmonic Mean Weight by Combining Content Based Filtering and Collaborative Filtering in a Recommender System (내용 기반 여과와 협력적 여과의 병합을 통한 추천 시스템에서 조화 평균 가중치)

  • 정경용;류중경;강운구;이정현
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.3_4
    • /
    • pp.239-250
    • /
    • 2003
  • Recent recommender system user a method of combining collaborative filtering system and content based filtering system in order to slove the problem of the Sparsity and First-Rater in collaborative filtering system. In this paper, to make up for the prediction accuracy in hybrid Recommender system, the harmonic mean weight(CBCF_harmonic_mean) is used for calculating the user similarity weight. After setting up the threshold as 45 considering the performance of content based filtering, we apply significance weight of n/45 to user similarity weight. To estimate the performance of the proposed method, it if compared with that of combing both the existing collaborative filtering system and the content- based filtering system. As a result, it confirms that the suggested method is efficient at improving the prediction accuracy as solving problems of the exiting collaborative filtering system.

A Refined Neighbor Selection Algorithm for Clustering-Based Collaborative Filtering (클러스터링기반 협동적필터링을 위한 정제된 이웃 선정 알고리즘)

  • Kim, Taek-Hun;Yang, Sung-Bong
    • The KIPS Transactions:PartD
    • /
    • v.14D no.3 s.113
    • /
    • pp.347-354
    • /
    • 2007
  • It is not easy for the customers to search the valuable information on the goods among countless items available in the Internet. In order to save time and efforts in searching the goods the customers want, it is very important for a recommender system to have a capability to predict accurately customers' preferences. In this paper we present a refined neighbor selection algorithm for clustering based collaborative filtering in recommender systems. The algorithm exploits a graph approach and searches more efficiently for set of influential customers with respect to a given customer; it searches with concepts of weighted similarity and ranked clustering. The experimental results show that the recommender systems using the proposed method find the proper neighbors and give a good prediction quality.

Improvement of UCI Metadata and Resolution Service for Massive Contents Recommendation (대규모 콘텐츠 추천을 지원하기 위한 UCI 메타데이터와 변환서비스의 기능 개선)

  • Na, Moon-Sung;Lee, Jae-Dong
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.3
    • /
    • pp.475-486
    • /
    • 2010
  • Contents Recommender System predicts user's preferences towards contents, and then recommends highly-predicted contents to user. Digital Identifier plays its part in identifying abstract works or digital contents in digital network environment. Digital Identifier could be effectively used in content-based filtering and collaborative filtering that are mainly used in Contents Recommender Systems. Therefore, this paper proposes an improvement of UCI metadata and resolution service for effective use of UCI in massive contents recommender systems. UCI metadata is expanded by adding elements such as abstract, keyword, genre, age, rate and review. Resolution service allows the operation systems to collect user preference for content by including input part of preference in a result page. This paper also designs and implements an improved UCI operation system and shows that the proposed improvement of UCI metadata and resolution service could be used for massive contents recommendation.

Development of Fashion Design Recommender System using Textile based Collaborative Filtering Personalization Technique (Textile 기반의 협력적 필터링 개인화 기술을 이용한 패션 디자인 추천 시스템 개발)

  • 정경용;나영주;이정현
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.9 no.5
    • /
    • pp.541-550
    • /
    • 2003
  • It is important for the strategy of product sales to investigate the consumer's sensitivity and preference degree in the environment that the process of material development has been changed focusing on the consumer renter. In the present study, we propose the Fashion Design Recommender System (FDRS) of textile design applying collaborative filtering personalization technique as one of methods in the material development centered on consumer's sensibility and preferences. In collaborative filtering personalization technique based on textile, Pearson Correlation Coefficient is used to calculate similarity weights between users. We build the database founded on the sensibility adjective to develop textile designs by extracting the representative sensibility adjective from users' sensibility and preferences about textile designs. FDRS recommends textile designs to a consumer who has a similar propensity about textile. Ultimately, this paper sugeests empirical applications to verify the adequacy and the validity on this system with the development of Fashion Design Recommender System (FDRS)

A Music Recommender System for m-CRM: Collaborative Filtering using Web Mining and Ordinal Scale (m-CRM을 위한 음악추천시스템: 웹 마이닝과 서열척도를 이용한 협업 필터링)

  • Lee, Seok-kee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.1
    • /
    • pp.45-54
    • /
    • 2008
  • As mobile Web technology becomes more increasingly applicable. the mobile contents market. especially the music downloading for mobile phones, has recorded remarkable growth. In spite of this rapid growth, customers experience high levels of frustration in the process of searching for desired music contents. It affects to a re-purchasing rate of customers and also. music mubile content providers experience a decrease in the benefit. Therefore, in aspects of a customer relationship management (CRM), a new way to increase a benefit by providing a convenient shopping environment to mobile customers is necessary. As an solution for this situation, we propose a new music recommender system to enhance the customers' search efficiency by combining collaborative filtering with mobile web mining and ordinal scale based customer preferences. Some experiments are also performed to verify that our proposed system is more effective than the current recommender systems in the mobile Web.

  • PDF

Applying Rating Score's Reliability of Customers to Enhance Prediction Accuracy in Recommender System (추천 시스템의 예측 정확도 향상을 위한 고객 평가정보의 신뢰도 활용법)

  • Choeh, Joon Yeon;Lee, Seok Kee;Cho, Yeong Bin
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.7
    • /
    • pp.379-385
    • /
    • 2013
  • On the internet, the rating scores assigned by customers are considered as the preference information of themselves and thus, these can be used efficiently in the customer profile generation process of recommender system. However, since anyone is free to assign a score that has a biased rating, using this without any filtering can exhibit a reliability problem. In this study, we suggest the methodology that measures the reliability of rating scores and then applies them to the customer profile creation process. Unlikely to some related studies which measure the reliability on the user level, we measure the reliability on the individual rating score level. Experimental results show that prediction accuracy of recommender system can be enhanced when ratings with higher reliability are selectively used for the customer profile configuration.

Collaborative Filtering for Credit Card Recommendation based on Multiple User Profiles (신용카드 추천을 위한 다중 프로파일 기반 협업필터링)

  • Lee, Won Cheol;Yoon, Hyoup Sang;Jeong, Seok Bong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.154-163
    • /
    • 2017
  • Collaborative filtering, one of the most widely used techniques to build recommender systems, is based on the idea that users with similar preferences can help one another find useful items. Credit card user behavior analytics show that most customers hold three or less credit cards without duplicates. This behavior is one of the most influential factors to data sparsity. The 'cold-start' problem caused by data sparsity prevents recommender system from providing recommendation properly in the personalized credit card recommendation scenario. We propose a personalized credit card recommender system to address the cold-start problem, using multiple user profiles. The proposed system consists of a training process and an application process using five user profiles. In the training process, the five user profiles are transformed to five user networks based on the cosine similarity, and an integrated user network is derived by weighted sum of each user network. The application process selects k-nearest neighbors (users) from the integrated user network derived in the training process, and recommends three of the most frequently used credit card by the k-nearest neighbors. In order to demonstrate the performance of the proposed system, we conducted experiments with real credit card user data and calculated the F1 Values. The F1 value of the proposed system was compared with that of the existing recommendation techniques. The results show that the proposed system provides better recommendation than the existing techniques. This paper not only contributes to solving the cold start problem that may occur in the personalized credit card recommendation scenario, but also is expected for financial companies to improve customer satisfactions and increase corporate profits by providing recommendation properly.

Recommender System using Association Rule and Collaborative Filtering (연관 규칙과 협력적 여과 방식을 이용한 추천 시스템)

  • 이기현;고병진;조근식
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.2
    • /
    • pp.91-103
    • /
    • 2002
  • A collaborative filtering which supports personalized services of users has been common use in existing web sites for increasing the satisfaction of users. A collaborative filtering is demanded that items are estimated more than specified number. Besides, it tends to ignore information of other users as recommending them on the basis of information of partial users who have similar inclination. However, there are valuable hidden information into other users' one. In this paper, we use Association Rule, which is common wide use in Data Mining, with collaborative filtering for the purpose of discovering those information. In addition, this paper proved that Association Rule applied to Recommender System has a effects to recommend users by the relation between groups. In other words, Association Rule based on the history of all users is derived from. and the efficiency of Recommender System is improved by using Association Rule with collaborative filtering.

  • PDF

Auto-tagging Method for Unlabeled Item Images with Hypernetworks for Article-related Item Recommender Systems (잡지기사 관련 상품 연계 추천 서비스를 위한 하이퍼네트워크 기반의 상품이미지 자동 태깅 기법)

  • Ha, Jung-Woo;Kim, Byoung-Hee;Lee, Ba-Do;Zhang, Byoung-Tak
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.10
    • /
    • pp.1010-1014
    • /
    • 2010
  • Article-related product recommender system is an emerging e-commerce service which recommends items based on association in contexts between items and articles. Current services recommend based on the similarity between tags of articles and items, which is deficient not only due to the high cost in manual tagging but also low accuracies in recommendation. As a component of novel article-related item recommender system, we propose a new method for tagging item images based on pre-defined categories. We suggest a hypernetwork-based algorithm for learning association between images, which is represented by visual words, and categories of products. Learned hypernetwork are used to assign multiple tags to unlabeled item images. We show the ability of our method with a product set of real-world online shopping-mall including 1,251 product images with 10 categories. Experimental results not only show that the proposed method has competitive tagging performance compared with other classifiers but also present that the proposed multi-tagging method based on hypernetworks improves the accuracy of tagging.

Implementation of a Machine Learning-based Recommender System for Preventing the University Students' Dropout (대학생 중도탈락 예방을 위한 기계 학습 기반 추천 시스템 구현 방안)

  • Jeong, Do-Heon
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.10
    • /
    • pp.37-43
    • /
    • 2021
  • This study proposed an effective automatic classification technique to identify dropout patterns of university students, and based on this, an intelligent recommender system to prevent dropouts. To this end, 1) a data processing method to improve the performance of machine learning was proposed based on actual enrollment/dropout data of university students, and 2) performance comparison experiments were conducted using five types of machine learning algorithms. 3) As a result of the experiment, the proposed method showed superior performance in all algorithms compared to the baseline method. The precision rate of discrimination of enrolled students was measured to be up to 95.6% when using a Random Forest(RF), and the recall rate of dropout students was measured to be up to 80.0% when using Naive Bayes(NB). 4) Finally, based on the experimental results, a method for using a counseling recommender system to give priority to students who are likely to drop out was suggested. It was confirmed that reasonable decision-making can be conducted through convergence research that utilizes technologies in the IT field to solve the educational issues, and we plan to apply various artificial intelligence technologies through continuous research in the future.