• Title/Summary/Keyword: recombinant wild-type

Search Result 175, Processing Time 0.027 seconds

Internalization of Rat FSH and LH/CG Receptors by rec-eCG in CHO-K1 Cells

  • Park, Jong-Ju;Seong, Hun-Ki;Kim, Jeong-Soo;Munkhzaya, Byambaragchaa;Kang, Myung-Hwa;Min, Kwan-Sik
    • Development and Reproduction
    • /
    • v.21 no.2
    • /
    • pp.111-120
    • /
    • 2017
  • Equine chorionic gonadotropin (eCG) is a unique molecule that elicits the response characteristics of both follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in other species. Previous studies from this laboratory had demonstrated that recombinant eCG (rec-eCG) from Chinese hamster ovary (CHO-K1) cells exhibited both FSH- and LH-like activity in rat granulosa and Leydig cells. In this study, we analyzed receptor internalization through rec-eCGs, wild type eCG ($eCG{\beta}/{\alpha}$) and mutant eCG ($eCG{\beta}/{\alpha}{\Delta}56$) with an N-linked oligosaccharide at $Asn^{56}$ of the ${\alpha}-subunit$. Both the rec-eCGs were obtained from CHO-K1 cells. The agonist activation of receptors was analyzed by measuring stimulation time and concentrations of rec-eCGs. Internalization values in the stably selected rat follicle-stimulating hormone receptor (rFSHR) and rat luteinizing/chorionic gonadotropin receptor (rLH/CGR) were highest at 50 min after stimulation with 10 ng of $rec-eCG{\beta}/{\alpha}$. The dose-dependent response was highest when 10 ng of $rec-eCG{\beta}/{\alpha}$ was used. The deglycosylated $eCG{\beta}/{\alpha}{\Delta}56$ mutant did not enhance the agonist-stimulated internalization. We concluded that the state of activation of rFSHR and rLH/CGR could be modulated through agonist-stimulated internalization. Our results suggested that the eLH/CGRs are mostly internalized within 60 min by agonist-stimulation by rec-eCG. We also suggested that the lack of responsiveness of the deglycosylated $eCG{\beta}/{\alpha}{\Delta}56$ was likely because the site of glycosylation played a pivotal role in agonist-stimulated internalization in cells expressing rFSHR and rLH/CGR.

Characterization of a New ${\beta}$-Lactamase Gene from Isolates of Vibrio spp. in Korea

  • Jun, Lyu-Jin;Kim, Jae-Hoon;Jin, Ji-Woong;Jeong, Hyun-Do
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.4
    • /
    • pp.555-562
    • /
    • 2012
  • PCR was performed to analyze the ${\beta}$-lactamase genes carried by ampicillin-resistant Vibrio spp. strains isolated from marine environments in Korea between 2006 and 2009. All 36 strains tested showed negative results in PCR with the primers designed from the nucleotide sequences of various known ${\beta}$-lactamase genes. This prompted us to screen new ${\beta}$-lactamase genes. A novel ${\beta}$-lactamase gene was cloned from Vibrio alginolyticus KV3 isolated from the aquaculture water of Geoje Island of Korea. The determined nucleotide sequence (VAK-3 ${\beta}$-lactamase) revealed an open reading frame (ORF) of 852 bp, encoding a protein of 283 amino acids (aa), which displayed low homology to any other ${\beta}$-lactamase genes reported in public databases. The deduced 283 aa sequence of VAK-3, consisting of a 19 aa signal peptide and a 264 aa mature protein, contained highly conserved peptide segments specific to class A ${\beta}$-lactamases including the specific amino acid residues STFK (62-65), SDN (122-124), E (158), and RTG (226-228). Results from PCR performed with primers specific to the VAK-3 ${\beta}$-lactamase gene identified 3 of the 36 isolated strains as V. alginolyticus, Vibrio cholerae, and Photobacterium damselae subsp. damselae, indicating the utilization of various ${\beta}$-lactamase genes including unidentified ones in ampicillin-resistant Vibrio spp. strains from the marine environment. In a mating experiment, none of the isolates transfered the VAK-3 ${\beta}$-lactamase gene to the Escherichia coli recipient. This lack of mobility, and the presence of a chromosomal acyl-CoA flanking sequence upstream of the VAK-3 ${\beta}$-lactamase gene, led to the assumption that the location of this new ${\beta}$-lactamase gene was in the chromosome, rather than the mobile plasmid. Antibiotic susceptibility of VAK-3 ${\beta}$-lactamase was indicated by elevated levels of resistance to penicillins, but not to cephalosporins in the wild type and E. coli harboring recombinant plasmid pKV-3, compared with those of the host strain alone. Phylogenetic analysis showed that VAK-3 ${\beta}$-lactamase is a new and separate member of class A ${\beta}$-lactamases.

The Progression of SARS Coronavirus 2 (SARS-CoV2): Mutation in the Receptor Binding Domain of Spike Gene

  • Sinae Kim;Jong Ho Lee;Siyoung Lee;Saerok Shim;Tam T. Nguyen;Jihyeong Hwang;Heijun Kim;Yeo-Ok Choi;Jaewoo Hong;Suyoung Bae;Hyunjhung Jhun;Hokee Yum;Youngmin Lee;Edward D. Chan;Liping Yu;Tania Azam;Yong-Dae Kim;Su Cheong Yeom;Kwang Ha Yoo;Lin-Woo Kang;Kyeong-Cheol Shin;Soohyun Kim
    • IMMUNE NETWORK
    • /
    • v.20 no.5
    • /
    • pp.41.1-41.11
    • /
    • 2020
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) is a positive-sense single-stranded RNA (+ssRNA) that causes coronavirus disease 2019 (COVID-19). The viral genome encodes twelve genes for viral replication and infection. The third open reading frame is the spike (S) gene that encodes for the spike glycoprotein interacting with specific cell surface receptor - angiotensin converting enzyme 2 (ACE2) - on the host cell membrane. Most recent studies identified a single point mutation in S gene. A single point mutation in S gene leading to an amino acid substitution at codon 614 from an aspartic acid 614 into glycine (D614G) resulted in greater infectivity compared to the wild type SARS-CoV2. We were interested in investigating the mutation region of S gene of SARS-CoV2 from Korean COVID-19 patients. New mutation sites were found in the critical receptor binding domain (RBD) of S gene, which is adjacent to the aforementioned D614G mutation residue. This specific sequence data demonstrated the active progression of SARS-CoV2 by mutations in the RBD of S gene. The sequence information of new mutations is critical to the development of recombinant SARS-CoV2 spike antigens, which may be required to improve and advance the strategy against a wide range of possible SARS-CoV2 mutations.

Enhancement of the solubility of human tissue inhibitor of matrix metallocroteinase-2 (TIMP-2) in E. coli using a modified in vitro mutagenesis (새로운 유전자 재조합 방법을 이용한 대장균에서의 인간 tissue inhibitor of mtrix metalloproteinase-2 (TIMP-2) 유전자의 가용성 발현)

  • Kim, Jong-Uk;Choi, Dong-Soon;Joo, Hyun;Min, Churl-K.
    • KSBB Journal
    • /
    • v.23 no.3
    • /
    • pp.231-238
    • /
    • 2008
  • The second family member of tissue inhibitors of matrix metalloproteinases, TIMP-2, is a 21kDa protein which inhibits matrix metalloproteinases 2 (MMP-2). Expression of mammalian proteins in E. coli often forms inclusion bodies that are made up of mis-folded or insoluble protein aggregates. The requirement for the formation of 6 disulfide bonds in the process of the TIMP-2 folding is likely to be incompatible with the reducing environment of E. coli. However, this incompatibility can be often overcome by introducing a mutagenesis that could lead to enhancement of the protein solubility. In this reason, we have attempted to express the soluble TIMP-2 in E. coli by applying a modified staggered extension process (StEP), one of the in vitro PCR-based recombinant mutagenesis methods, and error-prone PCR. C-terminally located CAT fusion protein with respect to mutated TIMP-2 proteins enables us to differentiate the soluble TIMP-2 from the insoluble in E. coli by virtue of chloramphenicol resistance. According to this scheme, E. coli harboring properly-folded CAT fused to TIMP-2 protein was selected, and some of the resulting colonies exhibited an enhanced, soluble expression of TIMP-2 compared to the wild type, implying (i) the StEP technique is successfully employed to enhance the proper folding thereby increasing the solubility of TIMP-2, and (ii) the CAT dependent screening may be a simple and effective method to differentiate the soluble protein expression in E. coli.

Cloning and Transcription Analysis of Sporulation Gene (spo5) in Schizosaccharomyces pombe (Schizosaccharomyces bombe 포자형성 유전자(spo5)의 Cloning 및 전사조절)

  • 김동주
    • The Korean Journal of Food And Nutrition
    • /
    • v.15 no.2
    • /
    • pp.112-118
    • /
    • 2002
  • Sporulation in the fission yeast Schizosaccharomyces pombe has been regarded as an important model of cellular development and differentiation. S. pombe cells proliferate by mitosis and binary fission on growth medium. Deprivation of nutrients especially nitrogen sources, causes the cessation of mitosis and initiates sexual reproduction by matting between two sexually compatible cell types. Meiosis is then followed in a diploid cell in the absence of nitrogen source. DNA fragment complemented with the mutations of sporulation gene was isolated from the S. pombe gene library constructed in the vector, pDB 248' and designated as pDB(spo5)1. We futher analyzed six recombinant plasmids, pDB(spo5)2, pDB(spo5)3, pDB(spo5)4, pDB(spo5)5, pDB (spo5)6, pDB(spo5)7 and found each of these plasmids is able to rescue the spo5-2, spo5-3, spo5-4, spo5-5, spo5-6, spo5-7 mutations, respectively. Mapping of the integrated plasmid into the homologous site of the S. pombe chromosomes demonstrated that pDB(spo5)1, and pDB(spu5)Rl contained the spo5 gene. Transcripts of spo5 gene were analyzed by Northern hybridization. Two transcripts of 3.2 kb and 2.5kb were detected with 5kb Hind Ⅲ fragment containing a part of the spo5 gene as a probe. The small mRNA(2.5kb) appeared only when a wild-type strain was cultured in the absence of nitrogen source in which condition the large mRNA (3.2kb) was produced constitutively. Appearance of a 2.5kb spo5-mRNA depends upon the function of the meil, mei2 and mei3 genes.