• 제목/요약/키워드: recombinant protein vaccine

검색결과 128건 처리시간 0.02초

IBDV에 대한 단크론항체 생산 및 진단적 응용 (Production and diagnostic application of monoclonal antibodies against infectious bursal disease virus)

  • 류민상;송윤기;이승철;모인필;강신영
    • 한국동물위생학회지
    • /
    • 제34권1호
    • /
    • pp.5-12
    • /
    • 2011
  • Infectious bursal disease (IBD) caused by infectious bursal disease virus (IBDV) is a highly contagious viral disease in chicken. It causes heavy economic loss by immune suppression and high mortality. The IBDV, designated Avibirnavirus in the Family Birnaviridae, has a double-stranded RNA genome formed by two segments, segment A and segment B. Segment A encodes a 108 KDa polypeptide that is self-cleaved to produce pVP2, VP3 and VP4, and later pVP2 is cleaved to VP2. The VP2 contains the antigenic regions responsible for elicitation of neutralizing antibodies and VP3 is a major immunogenic protein of IBDV. In this study, monoclonal antibodies (MAbs) specific for IBDV were produced and characterized. All 15 MAbs were specific for IBDV and did not react with other viruses used in this study. The protein specificity of MAbs was determined by comparing the reactivity patterns of each MAb with IBDV VP2 and VP234 recombinant baculoviruses and Western blot analysis. As a result, 7 MAbs (1F5, 2C8, 2F4, 3C7, 4C3, 6F11, 6G5) and 5 MAbs (2A4, 2G2, 3F5, 3G2, 4F10) were specific for VP2 and VP3, respectively. The protein specificity of 3 MAbs (2B8, 3F7, 3F8) were not determined. Five (2C8, 2F4, 4C3, 6F11, 6G5) of the VP2-specific MAbs had a neutralizing activity against IBDV. Some MAbs reacted with IBDV-infected bursa of Fabricius by indirect fluorescence antibody (IFA) and immunohistochemistry (IHC) assay. The MAbs produced in this study would be used for diagnostic reagents for the detection of IBDV infection.

Analysis of Immune Responses Against Nucleocapsid Protein of the Hantaan Virus Elicited by Virus Infection or DNA Vaccination

  • Woo Gyu-Jin;Chun Eun-Young;Kim Keun Hee;Kim Wankee
    • Journal of Microbiology
    • /
    • 제43권6호
    • /
    • pp.537-545
    • /
    • 2005
  • Even though neutralizing antibodies against the Hantaan virus (HTNV) has been proven to be critical against viral infections, the cellular immune responses to HTNV are also assumed to be important for viral clearance. In this report, we have examined the cellular and humoral immune responses against the HTNV nucleocapsid protein (NP) elicited by virus infection or DNA vaccination. To examine the cellular immune response against HTNV NP, we used $H-2K^b$ restricted T-cell epitopes of NP. The NP-specific $CD8^+$ T cell response was analyzed using a $^{51}Cr-release$ assay, intracellular cytokine staining assay, enzyme-linked immunospot assay and tetramer binding assay in C57BL/6 mice infected with HTNV. Using these methods, we found that HTNV infection elicited a strong NP-specific $CD8^+$ T cell response at eight days after infection. We also found that several different methods to check the NP-specific $CD8^+$ T cell response showed a very high correlation among analysis. In the case of DNA vaccination by plasmid encoding nucleocapsid gene, the NP-specific antibody response was elicited $2\~4$ weeks after immunization and maximized at $6\~8$ weeks. NP-specific $CD8^+$ T cell response reached its peak 3 weeks after immunization. In a challenge test with the recombinant vaccinia virus expressing NP (rVV-HTNV-N), the rVV-HTNV-N titers in DNA vaccinated mice were decreased about 100-fold compared to the negative control mice.

Subcutaneous Streptococcus dysgalactiae GAPDH vaccine in mice induces a proficient innate immune response

  • Ran An;Yongli Guo;Mingchun Gao;Junwei Wang
    • Journal of Veterinary Science
    • /
    • 제24권5호
    • /
    • pp.72.1-72.16
    • /
    • 2023
  • Background: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) on the surface of Streptococcus dysgalactiae, coded with gapC, is a glycolytic enzyme that was reported to be a moonlighting protein and virulence factor. Objective: This study assessed GAPDH as a potential immunization candidate protein to prevent streptococcus infections. Methods: Mice were vaccinated subcutaneously with recombinant GAPDH and challenged with S. dysgalactiae in vivo. They were then evaluated using histological methods. rGAPDH of mouse bone marrow-derived dendritic cells (BMDCs) was evaluated using immunoblotting, reverse transcription quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay methods. Results: Vaccination with rGAPDH improved the survival rates and decreased the bacterial burdens in the mammary glands compared to the control group. The mechanism by which rGAPDH vaccination protects against S. dysgalactiae was investigated. In vitro experiments showed that rGAPDH boosted the generation of interleukin-10 and tumor necrosis factor-α. Treatment of BMDCs with TAK-242, a toll-like receptor 4 inhibitor, or C29, a toll-like receptor 2 inhibitor, reduced cytokines substantially, suggesting that rGAPDH may be a potential ligand for both TLR2 and TLR4. Subsequent investigations showed that rGAPDH may activate the phosphorylation of MAPKs and nuclear factor-κB. Conclusions: GAPDH is a promising immunization candidate protein for targeting virulence and enhancing immune-mediated protection. Further investigations are warranted to understand the mechanisms underlying the activation of BMDCs by rGAPDH in a TLR2- and TLR4-dependent manner and the regulation of inflammatory cytokines contributing to mastitis pathogenesis.

Construction of tat-and nef-defective HIV-1 and screening of natural extracts with anti-HIV-1 activity

  • Lee, Ann-Hwee;Song, Man-Ki;Suh, Young-Ah;Sung, Young-Chul
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1995년도 춘계학술대회
    • /
    • pp.77-77
    • /
    • 1995
  • Human immunodeficiency virus type 1 (HIV-1) contains several nonstructural genes which are required for the viral replication and disease pathogenesis. Among them, tat and nef genes encode an essential transactivator of HIV-1 LTR and a pluripotent protein which seems to be essential for the in vivo but not in vitro viral replication, respectively. We constructed two tat and n of defective HIV-1 and tested for their ability to replicate in several T cells. The defective viruses did not replicate in CD4$\^$+/ T cells, but rescued in the recombinant Jurkat-tat cell which also contains tat gene. The replication of tat and nef defective HIV-1 which expresses chloramphenicol acetyltransferase(CAT) gene was easily detected by a sensitive CAT assay. No revertant was identified during the passages of the mutant viruses for more than two months in Jurkat-tat cells. tat and n of defective HIV-1 could be used instead of wild type viruse for several purposes such as inhibitor screening and development of attenuated AIDS vaccine.

  • PDF

Construction of a live attenuated Salmonella strain expressing FanC protein to prevent bovine enterotoxigenic Escherichia coli and evaluation of its immunogenicity in mice

  • Won, Gayeon;Kim, Hee Jung;Lee, John Hwa
    • 대한수의학회지
    • /
    • 제57권1호
    • /
    • pp.9-15
    • /
    • 2017
  • To construct a novel vaccine candidate against bovine enterotoxigenic Escherichia coli (ETEC), FanC, the major subunit of K99 fimbriae adhesion, was inserted into secretion plasmid pYA3560 containing a ${\beta}-lactamase$ secretion system. This was then transformed into ${\Delta}asd$ ${\Delta}crp$ Salmonella (S.) Typhimurium and designated as JOL950. Secretion of recombinant fanC fimbrial antigens was confirmed by immunoblot analysis. Groups of mice were inoculated with single or double doses of JOL950. Another group was used as a negative control. Compared to control mice, all immunized mice had significantly higher levels (p < 0.05) of serum immunoglobulin (Ig)G, and secretory IgA against FanC. The IgG2a and IgG1 titer assays revealed that immunization highly induced IgG2a compared to that of IgG1, indicating that T helper-1- related cell-mediated immune responses may be elicited by JOL950. The results show that both systemic and mucosal immunities against selected fimbrial antigens of bovine ETEC expressed by a live attenuated S. Typhimurium strain are prominently produced in mice immunized with JOL950 via an oral route.

한국인 영아에서 분리된 G1 로타바이러스의 VP7 단백 유전자 염기서열 및 발현 (Sequence Analysis and Expression of the VP7 Gene of G1 Rotavirus Isolated from an Infant in Korean)

  • 김원용;송미옥;박철민;임성준;김기정;정상인;최철순;임인석
    • 대한바이러스학회지
    • /
    • 제28권3호
    • /
    • pp.247-265
    • /
    • 1998
  • To determine the sequence and expression of the VP7 gene of Korean isolates (CAU-9), viral RNA was purified and used for cDNA amplification by RT-PCR. The VP7 cDNA was cloned, sequenced, and expressed using baculovirus expression system. The result showed that the sequence homologies CAU-9 compared with foreign isolated strains Wa, 417, TMC-II, 95B and SA11 were ranged from 74.0% to 95.1 % of nucleotide sequence and 35% to 43% of amino acid sequence, respectively. High homology of CAU-9 was observed in Japanease isolates 417 (nucleotide sequence homology was 95.1% and amino acid sequence homology was 43%). To express VP7 gene, the VP7 cDNA was cloned into pCR-Bac vector and inserted into the genome of baculovirus adjacent to the polyhedrin promoter by cotransfection of Spodoptera frugiperda (Sf9) insect cells with wild type baculovirus DNA. In antigenic analysis of Sf9 cells inoculated with the recombinant VP7, immunofluorescence assay revealed positive for viral antigens. In metabolic labeling of Sf9 cell lysates infected with recombinant baculoviruses, it was revealed that the protein of 34 kDa was expressed. The limited study of expressed VP7 protein inoculated with guinea pigs failed to elicit neutalizing antibody. As a results, the sequence analysis and expression of VP7 protein of rotavirus CAU-9 isolated from an infant in Korea could permit the conformation and development of virus like particles which may be useful in designing vaccine strategy.

  • PDF

Brucella abortus 국내 분리주의 Heat Shock Protein 암호 groE 유전자의 염기서열 분석과 발현 (Sequence analysis and expression of groE gene encoding heat shock proteins of Brucella abortus isolates)

  • 김태용;김지영;장경수;김명철;박창식;한홍율;전무형
    • 대한수의학회지
    • /
    • 제45권1호
    • /
    • pp.45-53
    • /
    • 2005
  • GroE that is a heat shock protein composed of GroEL and GroES is known as an immunodominant target of both the humoral and cellular immune responses in bovine brucellosis. This study was carried out to characterize groE gene encoding heat shock proteins of B. abortus isolated in Korea and to evaluate the immunogenicity of the GroE protein expressed in E. coli system. In PCR the specific signals with the size of 2,077 bp were detected in five strains isolated from the mammary lymphnodes of the dairy cattle that were serologically positive and the reference strains. In comparison of the sequences of nucleotides and amino acids among the strains, GroES showed 100% identity in both sequences. GroEL was evaluated 99.0~99.9% in nucleotides and 98.0~100% homology in amino acids. The groE gene including groES and groEL was inserted into pET29a vector and constructed pET29a-GroE recombinant plasmids. The inserted groE was confirmed by digestion with Nco1 and EcoR1 endonucleases and nucleotide sequencing. E. coli BL (DE3) was transformed with pET29a-GroE, named as E. coli BL (DE3)/pET29a-GroE. In SDS-PAGE, it was evident that the recombinant plasmid effectively expressed the polypeptides for GroES (10 kDa) and GroEL (60 kDa) in 0.5, 1 and 2 hours after IPTG induction. The immuno-reactivity of the expressed proteins were proved in mouse inoculation and Western blot analysis.

Characterization of Pv92, a Novel Merozoite Surface Protein of Plasmodium vivax

  • Lee, Seong-Kyun;Wang, Bo;Han, Jin-Hee;Nyunt, Myat Htut;Muh, Fauzi;Chootong, Patchanee;Ha, Kwon-Soo;Park, Won Sun;Hong, Seok-Ho;Park, Jeong-Hyun;Han, Eun-Taek
    • Parasites, Hosts and Diseases
    • /
    • 제54권4호
    • /
    • pp.385-391
    • /
    • 2016
  • The discovery and understanding of antigenic proteins are essential for development of a vaccine against malaria. In Plasmodium falciparum, Pf92 have been characterized as a merozoite surface protein, and this protein is expressed at the late schizont stage, but no study of Pv92, the orthologue of Pf92 in P. vivax, has been reported. Thus, the protein structure of Pv92 was analyzed, and the gene sequence was aligned with that of other Plasmodium spp. using bioinformatics tools. The recombinant Pv92 protein was expressed and purified using bacterial expression system and used for immunization of mice to gain the polyclonal antibody and for evaluation of antigenicity by protein array. Also, the antibody against Pv92 was used for subcellular analysis by immunofluorescence assay. The Pv92 protein has a signal peptide and a sexual stage s48/45 domain, and the cysteine residues at the N-terminal of Pv92 were completely conserved. The N-terminal of Pv92 was successfully expressed as soluble form using a bacterial expression system. The antibody raised against Pv92 recognized the parasites and completely merged with PvMSP1-19, indicating that Pv92 was localized on the merozoite surface. Evaluation of the human humoral immune response to Pv92 indicated moderate antigenicity, with 65% sensitivity and 95% specificity by protein array. Taken together, the merozoite surface localization and antigenicity of Pv92 implicate that it might be involved in attachment and invasion of a merozoite to a new host cell or immune evasion during invasion process.

한국에서 분리된 Vibrio harveyi 외막단백질의 유전적 차이와 넙치(Paralichthys olivaceus)에 대한 OmpW의 면역원성 분석 (Genetic Variations of Outer Membrane Protein Genes of Vibrio harveyi Isolated in Korea and Immunogenicity of OmpW in Olive Flounder, Paralichthys olivaceus)

  • 김명석;진지웅;정승희;서정수;홍수희
    • 수산해양교육연구
    • /
    • 제27권5호
    • /
    • pp.1508-1521
    • /
    • 2015
  • Vibrio harveyi is a pathogenic marine bacterium causing systemic symptoms resulting in mass mortalities in fishes and shrimps in aquaculture. Outer membrane proteins(OMPs) are related to the pathogenicity and thus good targets for diagnosis and vaccination for Gram negative bacteria. Recently vaccination strategies using the OMPs have been suggested to control vibriosis in several fish species. In this study, we have isolated V. harveyi from diseased marine fishes from different regions of Korea and investigated genetic variations of four OMP genes including OmpK, OmpU, OmpV and OmpW. Consequently, OmpK and U genes could be divided into 3 subgroups of type I, II, III and type A, B, C, respectively, without any correlation with geographical regions and species while OmpV and W were highly homologous. OmpW gene of V. harveyi FP4138 was fully sequenced and predicted the deduced amino acid sequence to form ${\beta}-barrel$ with hydrophobic channel. Indeed, the immunogenicity of recombinant OmpW produced in Escherichia coli was assessed by vaccinating flounder. As a result, the high antibody response with antibody titer of $4.2{\pm}0.7$ and protection with relative percent survival of 60% against artificial infection of V. harveyi were demonstrated. This result indicates that OmpW is a virulence related factor and it can be a vaccine candidate to prevent a high mortality caused by V. harveyi infection in olive flounder, Paralichthys olivaceus.

Expression of Rotavirus Capsid Proteins VP6 and VP7 in Mammalian Cells Using Semliki Forest Virus-Based Expression System

  • Choi, Eun-Ah;Kim, Eun;Oh, Yoon-I;Shin, Kwang-Soon;Kim, Hyun-Soo;Kim, Chul-Joong
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권3호
    • /
    • pp.463-469
    • /
    • 2002
  • Rotaviruses are the world-wide leading causative agents of severe dehydrating gastroenteritis in young children and animals. The outer capsid glycoprotein VP7 and inner capsid glycoprotein VP6 of rotaviruses are highly antigenic and immunogenic. An SFV-based expression system has recently emerged as a useful tool for heterologous protein production in mammalian cells, exhibiting a much more efficient performance compared to other gene expression systems. Accordingly, the current study adopted an SFV-based expression system to express the VP7 of a group A human rotavirus from a Korean isolate, and the VP6 of a group B bovine rotavirus from a Korean isolate, in mammalian cells. The genes of the VP6 and VP7 were inserted into the SFV expression vector pSFV-1. The RNA was transcribed in vitro from pSFV-VP6 and pSFV-VP7 using SP6 polymerase. Each RNA was then electroporated into BHK-21 cells along with pSFV-helper RNA containing the structural protein gene without the packaging signal. The expression of VP6 and VP7 in the cytoplasm was then detected by immunocytochemistry. The recombinant virus was harvested by ultracentrifugation and examined under electron microscopy. After infecting BHK-21 cells with the defective viruses, the expressed proteins were separated by SDS-PAGE and analyzed by a Western blot. The results indicate that an SFV-based expression system fur the VP6 and VP7 of rotaviruses is an efficient tool for developing a diagnostic kit and/or preventive vaccine.