• Title/Summary/Keyword: recombinant enzyme

Search Result 710, Processing Time 0.028 seconds

BACTERIAL IDENTIFICATION WITH RANDOM-CLONED RESTRICTION FRAGMENT OF Porphyromonas endodontalis ATCC 35406 GENOMIC DNA (무작위로 클로닝한 Porphyromonas endodontalis ATCC 35406 지놈 DNA의 제한절편 hybridization법에 의한 세균동정)

  • Um, Won-Seok;Han, Yoon-Soo
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.2
    • /
    • pp.645-654
    • /
    • 1995
  • Porphyromonas endodontalis is a black-pigmented anaerobic Gram negative rod which is associated with endodontal infections. It has been isolated from infected dental root canals and submucous abscesses of endodontal origin. DNA probe is an available alternative, offering the direct detection of a specific microorganism. Nucleic-acid probes can be off different types: whole different: whole-genomic, cloned or oligonucleotide probes. Wholegenomic probes are the most sensitive because the entire genome is used for possible hybridization sites. However, as genetically similar species of bacteria are likely to be present in specimences, cross-reactions need to be considered. Cloned probes are isolated sequences of DNA that do not show cross-reactivity and are produced in quantity by cloning in a plasmid vector. Cloned probes can approach the sensitivity found with whole-genomic probes while avoiding known cross-reacting species. Porphyromonas endodontalis ATCC 35406 (serotype $O_1K_1$) was selected in this experiment to develop specific cloned DNA probes. EcoR I-digested genomic DNA fragments of P. endodontalis ATCC 35406 were cloned into pUC18 plasmid vector. From the E. coli transformed with the recombinant plasmid 4 clones were selected to be tested as specific DNA probes. Restriction-digested whole-genomic DNAs prepared from P. gingivalis 38(serotype a), W50(serotype b), A7A1-28(serotype C), P. intermedia 9336(serotype b), G8-9K-3(serotype C), P. endodontalis ATCC 35406(serotype $O_1K_1$), A. a Y4(serotype b), 75(serotype a), 67(serotype c), were each seperated on agarose gel electrophoresis, blotted on nylon membranes, and were hybridized with digoxigenin-dUTP labeled probe. The results were as follows: 1. Three clones of 1.6kb(probe e), 1.6kb(probe f), and 0.9kb(probe h) in size, were obtained. These clones were identified to be a part of the genomic DNA of P. endodontalis ATCC 35406 judging from their specific hybridization to the genomic DNA fragments of their own size on Southern blot. 2. The clones of 4.9kb(probe i) was identified to be a part of the genomic DNA of P. endodontalis ATCC 35406. but not to specific for itself. It was hybridized to P. gingivalis A7A1-28, P. intermedia G89K-3.

  • PDF

Partial Characterization of Two Cathepsin D Family Aspartic Peptidases of Clonorchis sinensis

  • Kang, Jung-Mi;Yoo, Won-Gi;Le, Huong Giang;Thai, Thi Lam;Hong, Sung-Jong;Sohn, Woon-Mok;Na, Byoung-Kuk
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.6
    • /
    • pp.671-680
    • /
    • 2019
  • Cathepsin D (CatD, EC 3.4.23.5) is a member belonging to the subfamily of aspartic endopeptidases, which are classified into the MEROPS clan AA, family A1. Helminth parasites express a large set of different peptidases that play pivotal roles in parasite biology and pathophysiology. However, CatD is less well known than the other classes of peptidases in terms of biochemical properties and biological functions. In this study, we identified 2 novel CatDs (CsCatD1 and CsCatD2) of Clonorchis sinensis and partially characterized their properties. Both CsCatDs represent typical enzymes sharing amino acid residues and motifs that are tightly conserved in the CatD superfamily of proteins. Both CsCatDs showed similar patterns of expression in different developmental stages of C. sinensis, but CsCatD2 was also expressed in metacercariae. CsCatD2 was mainly expressed in the intestines and eggs of C. sinensis. Sera obtained from rats experimentally infected with C. sinensis reacted with recombinant CsCatD2 beginning 2 weeks after infection and the antibody titers were gradually increased by maturation of the parasite. Structural analysis of CsCatD2 revealed a bilobed enzyme structure consisting of 2 antiparallel β-sheet domains packed against each other forming a homodimeric structure. These results suggested a plausible biological role of CsCatD2 in the nutrition and reproduction of parasite and its potential utility as a serodiagnostic antigen in clonorchiasis.

The amino acid analysis of polyhedrin and DNA sequence of ployhedrin gene in nuclear polyhedrosis virus (Nuclear polyhedrosis virus의 polyhedrin 아미노산 및 polyhedrin gene 염기서열 분석)

  • Lee, Keun-Kwang
    • Journal of fish pathology
    • /
    • v.8 no.1
    • /
    • pp.37-46
    • /
    • 1995
  • The amino acid analysis of polyhedrin protein and nucleotide sequence of polyhedrin gene in H. cunea nuclear polyhedrosis virus (HcNPV) genome have been studied. Polyhedrin had three polypeptide bands in SDS - polyactylamide gel electrophoresis. The major polypeptide had a molecular weight of 25 kd. The polyhedrin was composed of 17 different amino acids. HcNPV DNA was digested with EcoRI restriction enzyme and hybridized with ($\alpha^{32}P$) -labelled AcNPV polyhedrin gene cDNA. The polyhedrin gene was located on the fragment of EcoRI-H. The EcoRI - H fragment containing polyhedrin gene was cloned into the EcoRI site of pUC8 vector which was confirmed with southern blotting, and the recombinant plasmid containg polyhedrin gene was designated as hPE-H. The promoter region of polyhedrin genomic DNA was sequenced. The sequences identified as the TATA box was found at the 5' flanking region of the polyhedrin genomic DNA approximately -79 bp upstream from the transcriptional start site. But CAAT-like box was not shown near the TATA-like box in the polyhedrin gene. Four tandem repeats with the sequence 5' -CTAATAT-3' and 5'-TAAATAA-3' were found between -141 and -108 or -83 upstream and -52 bp downstream from the translation start site. About -141 bp region upstream from the translational start site was highly AT (78%) rich. The coding region for the polyhedrin starts and ends with ATG and TAA, respectively.

  • PDF

Identification of a conservative site in the African swine fever virus p54 protein and its preliminary application in a serological assay

  • Xu, Lingyu;Cao, Chenfu;Yang, Zhiyi;Jia, Weixin
    • Journal of Veterinary Science
    • /
    • v.23 no.4
    • /
    • pp.55.1-55.12
    • /
    • 2022
  • Background: ASF was first reported in Kenya in 1910 in 1921. In China, ASF spread to 31 provinces including Henan and Jiangsu within six months after it was first reported on August 3, 2018. The epidemic almost affected the whole China, causing direct economic losses of tens of billions of yuan. Cause great loss to our pig industry. As ELISA is cheap and easy to operate, OIE regards it as the preferred serological method for ASF detection. P54 protein has good antigenicity and is an ideal antigen for detection. Objective: To identify a conservative site in the African swine fever virus (ASFV) p54 protein and perform a Cloth-enzyme-linked immunosorbent assay (ELISA) for detecting the ASFV antibody in order to reduce risks posed by using the live virus in diagnostic assays. Method: We used bioinformatics methods to predict the antigen epitope of the ASFV p54 protein in combination with the antigenic index and artificially synthesized the predicted antigen epitope peptides. Using ASFV-positive serum and specific monoclonal antibodies (mAbs), we performed indirect ELISA and blocking ELISA to verify the immunological properties of the predicted epitope polypeptide. Results: The results of our prediction revealed that the possible antigen epitope regions were A23-29, A36-45, A72-94, A114-120, A124-130, and A137-150. The indirect ELISA showed that the peptides A23-29, A36-45, A72-94, A114-120, and A137-150 have good antigenicity. Moreover, the A36-45 polypeptide can react specifically with the mAb secreted by hybridoma cells, and its binding site contains a minimum number of essential amino acids in the sequence 37DIQFINPY44. Conclusions: Our study confirmed a conservative antigenic site in the ASFV p54 protein and its amino acid sequence. A competitive ELISA method for detecting ASFV antibodies was established based on recombinant p54 and matching mAb. Moreover, testing the protein sequence alignment verified that the method can theoretically detect antibodies produced by pigs affected by nearly all ASFVs worldwide.

Culture Conditions of E. coli Harboring Human O-Linked N-Acetyl-${\beta}$-Glucosaminidase Gene and Enzymatic Properties (사람의 O-linked-N-acetyl-${\beta}$-D-glucosaminidase 유전자를 함유한 대장균의 배양조건과 효소학적 특성)

  • 강대욱;조용권;서현효
    • Korean Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.147-153
    • /
    • 2004
  • Protein modification by N-acetyl-${\beta}$-D-glucosamine (O-G1cNAc) on the hydroxyl groups of Ser or Thr ubiq-uitously occurs in eukaryotic cells and is involved in many cellular phenomena. The level of O-G1cNAc-mod-ified protein is regulated by OGT and O-GlcNAcase enzymes. We have tried to produce recombinant O-GlcNAcase in E. coli as an effort to establish in vitro screening system for modulators of O-GlcNAcase. The culture conditions for improvement of O-GlcNAcase productivity, were as follows: induction temperature, $30^{\circ}C$; the concentration of L-arabinose, 0.02% and induction time, 5 hr. Under these culture conditions, E. coli cells containing O-GlcNAcase gene had no enzyme activity until up to 3 hr culture. However, O-GlcNAcase activity dramatically increased from 3 to 5 hr culture. It almost maintained the same level after 5 hr culture. Western blot analysis verified the amount of expressed O-GlcNAcase increased with culture time, being con-sistent with activity data. The optimal reaction condition determined in this study was as follows: protein quan-tity, $5{\mu}g$; reaction time, 30 min; reaction temperature, $45^{\circ}C$; substrate concentration, 2 mM; reaction pH, 6.5. Methanol had little effect on O-GlcNAcase activity and 90% of activity were retained at 10%. Only 15% resid-ual activity were detected at 5% of chloroform.

The Progression of SARS Coronavirus 2 (SARS-CoV2): Mutation in the Receptor Binding Domain of Spike Gene

  • Sinae Kim;Jong Ho Lee;Siyoung Lee;Saerok Shim;Tam T. Nguyen;Jihyeong Hwang;Heijun Kim;Yeo-Ok Choi;Jaewoo Hong;Suyoung Bae;Hyunjhung Jhun;Hokee Yum;Youngmin Lee;Edward D. Chan;Liping Yu;Tania Azam;Yong-Dae Kim;Su Cheong Yeom;Kwang Ha Yoo;Lin-Woo Kang;Kyeong-Cheol Shin;Soohyun Kim
    • IMMUNE NETWORK
    • /
    • v.20 no.5
    • /
    • pp.41.1-41.11
    • /
    • 2020
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) is a positive-sense single-stranded RNA (+ssRNA) that causes coronavirus disease 2019 (COVID-19). The viral genome encodes twelve genes for viral replication and infection. The third open reading frame is the spike (S) gene that encodes for the spike glycoprotein interacting with specific cell surface receptor - angiotensin converting enzyme 2 (ACE2) - on the host cell membrane. Most recent studies identified a single point mutation in S gene. A single point mutation in S gene leading to an amino acid substitution at codon 614 from an aspartic acid 614 into glycine (D614G) resulted in greater infectivity compared to the wild type SARS-CoV2. We were interested in investigating the mutation region of S gene of SARS-CoV2 from Korean COVID-19 patients. New mutation sites were found in the critical receptor binding domain (RBD) of S gene, which is adjacent to the aforementioned D614G mutation residue. This specific sequence data demonstrated the active progression of SARS-CoV2 by mutations in the RBD of S gene. The sequence information of new mutations is critical to the development of recombinant SARS-CoV2 spike antigens, which may be required to improve and advance the strategy against a wide range of possible SARS-CoV2 mutations.

Cloning of $\beta$-Glucosidase Gene from Streptomyces coelicolor A3(2) and Characterization of the Recombinant $\beta$-Glucosidase Expressed in Escherichia coli (Streptomyces coelicolor A3(2)로 부터 $\beta$-Glucosidase 유전자 클로닝 및 재조합 효소의 특성)

  • Kim, Jae-Young;Kim, Bong-Kyu;Yi, Yong-Sub;Kang, Chang-Soo;Ahn, Joong-Hoon;Lim, Yoong-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.2
    • /
    • pp.99-104
    • /
    • 2009
  • The $\beta$-glucosidase gene from Streptomyces coelicolor A3(2) was cloned and expressed in Escherichia coli. The ORF consisted of 1377 nucleotides encoding 51 kDa in a predicted molecular weight. Effects of pH indicated that the $\beta$-glucosidase showed similar activity using $\alpha$-pNPG($\rho$-nitrophenyl-$\alpha$-D-glucopyranoside), $\beta$-pNPG($\rho$-nitrophenyl-$\beta$-D-glucopyranoside), and $\beta$-pNPF($\rho$-nitrophenyl-$\beta$-D-fucopyranoside) at range of pH 3 to 10, and high activity using $\beta$-pNPGA ($\rho$-nitrophenyl-$\beta$-D-galactopyranoside) from pH 5 to 10, especially, 3.3 times higher activity at pH 9. Effects of temperature indicated that the $\beta$-glucosidase showed low activity using $\alpha$-pNPG, $\beta$-pNPG, and $\beta$-pNPF from $20^{\circ}C$ to $70^{\circ}C$, and increased activity using $\beta$-pNPGA from $30^{\circ}C$ to $50^{\circ}C$, 1.8 times higher activity at $50^{\circ}C$ than at $30^{\circ}C$. According to activity determination of other substrates, the enzyme was active on daidzin, genistin, and glycitin, inactive on esculin and apigenin-7-glucose. The EDTA and DTT as reducing agents inhibited $\beta$-glucosidase activity, but SDS and mercaptoethanol did not inhibit. Monovalent or divalent metal ions such as $MnSO_4$, $CaCl_2$, KCl, and $MgSO_4$ did not inhibited $\beta$-glucosidase activity. $CuSO_4$ and NaCl showed low inhibition, and $ZnSO_4$ inhibited 3.3 times higher than control.

Development of pSJE6c, an Expression Vector for Kimchi Lactic Acid Bacteria, and Heterologous Gene Expression Using the Vector (김치유산균용 발현벡터 pSJE6c 개발과 이를 이용한 외래 유전자 발현)

  • Lee, Kang-Wook;Park, Ji-Yeong;Lee, Ji-Yeon;Lee, Hwang-A;Baek, Chang-Un;Jo, Hyeon-Deok;Kim, Joo-Yeon;Kwon, Gun-Hee;Chun, Ji_Yeon;Kim, Jeong-Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.4
    • /
    • pp.389-398
    • /
    • 2009
  • Development of expression vectors is important for the basic and applied researches on kimchi LAB (lactic acid bacteria). An expression vector, pSJE6c was constructed by inserting P6C promoter sequence from Lactococcus lactis into pSJE, a shuttle vector for E. coli and Leuconostoc species. To test the efficiency of pSJE6c, aga ($\alpha$-galactosidase) and lacZ ($\beta$-galactosidase) genes were expressed in Lactobacillus brevis 2.14. Compared to the pSJE, expression levels of both genes were increased, indicating P6C promoter was better than indigenous promoters. Enzyme activities of L. brevis cells harboring pSJE6caga (pSJE6c with aga) or pSJE6Z (pSJE6c with lacZ) were 1.5-2 fold higher than those with pSJEaga (pSJE with aga) or pSJEZ (pSJE with lacZ). More RNA transcripts were detected in cells harboring pSJE6c based recombinant plasmid. The results indicated that heterologous gene expressions in kimchi LAB could be improved significantly by use of efficient expression vectors.

Biochemical Characterizations of Phenylalanine Ammonia-Lyase and its Mutants to Develop an Enzymatic Therapy for Phenylketonuria (페닐케톤뇨증의 효소치료 개발을 위한 phenylalanine ammonia-lyase 및 유전자 변이형의 생화학적 특성)

  • Kim, Woo-Mi
    • Journal of Life Science
    • /
    • v.19 no.9
    • /
    • pp.1226-1231
    • /
    • 2009
  • Enzyme substitution with recombinant phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) is currently being explored for treatment of phenylketonuria (PKU), an autosomal recessive genetic disorder with mutations of the gene encoding phenylalanine-4-hydroxylase (EC 1.14.16.1). However, oral administration of PAL is limited because of proteolytic digestion in the gastrointestinal tract. The aim of this study was to determine the biochemical properties of PAL and delinate the susceptibility of wild-type PAL to pancreatic proteolysis by exploring several mutants, and to develop therapeutic drugs with PAL for PKU. The specific activity of PAL was assayed and its optimal pH, temperature stability, and intestinal protease susceptibility were investigated. Its $V_{max}$ values for phenylalanine and tyrosine were 1.77 and $0.47{\mu}mol$/ min/mg protein, respectively, and its $K_m$ values were $4.77{\times}10^{-4}$ and $4.37{\times}10^{-4}\;M$, respectively. PAL showed an optimal pH at 8.5, corresponding to the average pH range of the small intestine. It showed no loss of activity at $-80^{\circ}C$ for 5 months and possessed 93.4% of its activity under $4^{\circ}C$ for 4 wks. PAL was susceptible to chymotrypsin digestion and, to a lesser extent, to trypsin, elastase, carboxypeptidase A, and B. The trypsin and chymotrypsin cleaving sites were mutated to investigate protection from pancreatic digestion and the specific activities of these mutants were evaluated. The six mutants displayed low specific activities compared to the wild-type, suggesting that the primary trypsin and chymotrypsin cleaving sites may be essential for catalytic reaction. The PAL mutants could therefore be applied as a pretreatment modality without susceptibility to proteolytic attack, however, additional modification for enhancing enzymatic activity is needed to reduce the Phe levels effectively.

Diagnostic Significance of the Serologic Test Using Antigen of Mycobacterium Tuberculosis for Antibody Detection by ELISA (결핵항원에 대한 혈청학적 검사와 진단적 유용성)

  • Park, Jae-Min;Park, Yeon-Soo;Chang, Yeon-Soo;Kim, Young-Sam;Ahn, Kang-Hyun;Kim, Se-Kyu;Chang, Joon;Kim, Sung-Kyu;Lee, Won-Young;Cho, Shang-Rae
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.2
    • /
    • pp.271-279
    • /
    • 1998
  • Background: Diagnosis by direct microscopy and/or by culture of the Mycobacterium tuberculosis from body fluids or biopsy specimens is "Gold standard". However, the sensitivity of direct microscopy after Ziehl-Neelsen staining is relatively low and culture of mycobacteria is time consuming. Detection of mycobacterial DNA in clinical samples by the polymerase chain reaction is highly sensitive but laborious and expensive. Therefore, rapid, sensitive and readily applicable new tests need to be developed. So we had evaluated the clinical significance of serologic detection of antibody to 38 kDa antigen, which is known as the most specific to the M. tuberculosis complex, and culture filtrate antigen by ELISA in sputum AFB smear negative patients. Method: In this study, culture tests for acid fast bacilli with sputa or bronchial washing fluids of 183 consecutive patients who were negative of sputum AFB smear were performed. Simultaneously serum antibodies to 38 kDa antigen and unheated culture filtrate of M. tuberculosis were detected by an ELISA method. Results: The optical densities of ELISA test with 38 kDa and culture filtrate antigen were significantly higher in active pulmonary tuberculosis cases than in non tuberculous pulmonary diseases (p<0.05), but in patients with active pulmonary tuberculosis, those of the sputum culture positive patients for M. tuberculosis were not significantly different from those of the sputum culture negative cases(p>0.05). In the smear-negative active pulmonary tuberculosis patients, the sensitivity of the ELISA using 38 kDa antigen and culture filtrate was 20.0% and 31.4%. respectively. The specificity was 95.3% and 93.9%. respectively. Conclusion : In active pulmonary tuberculosis but smear negative, the serologic detection of antibody to 38 kDa antigen and culture filtrate by ELISA cannot substitute traditional diagnostic tests and does not have clinically significant role to differenciate the patient with active pulmonary tuberculosis from other with non-tuberculous pulmonary diseases.

  • PDF