• Title/Summary/Keyword: recombinant enzyme

Search Result 710, Processing Time 0.05 seconds

Production of a Recombinant Laccase from Pichia pastoris and Biodegradation of Chlorpyrifos in a Laccase/Vanillin System

  • Xie, Huifang;Li, Qi;Wang, Minmin;Zhao, Linguo
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.6
    • /
    • pp.864-871
    • /
    • 2013
  • The recombinant strain P. pastoris GS115-lccC was used to produce laccase with high activity. Factors influencing laccase expression, such as pH, methanol concentration, copper concentration, peptone concentration, shaker rotate speed, and medium volume were investigated. Under the optimal conditions, laccase activity reached 12,344 U/L on day 15. The recombinant enzyme was purified by precipitating and dialyzing to electrophoretic homogeneity, and was estimated to have a molecular mass of about 58 kDa. When guaiacol was the substrate, the laccase showed the highest activity at pH 5.0 and was stable when the pH was 4.5~6.0. The optimal temperature for the laccase to oxidize guaiacol was $60^{\circ}C$, but it was not stable at high temperature. The enzyme could remain stable at $30^{\circ}C$ for 5 days. The recombinant laccase was used to degrade chlorpyrifos in several laccase/mediator systems. Among three synthetic mediators (ABTS, HBT, VA) and three natural mediators (vanillin, 2,6-DMP, and guaiacol), vanillin showed the most enhancement on degradation of chlorpyrifos. Both laccase and vanillin were responsible for the degradation of chlorpyrifos. A higher dosage of vanillin may promote a higher level of degradation of chlorpyrifos, and the 2-step addition of vanillin led to 98% chlorpyrifos degradation. The degradation of chlorpyrifos was faster in the L/V system ($k_{obs}$ = 0.151) than that in the buffer solution ($k_{obs}$ = 0.028).

Periodic Change in DO Concentration for Efficient Poly-${\beta}$-hydroxy-butyrate Production Using Temperature-inducible Recombinant Escherichia coli with Proteome Analysis

  • Abdul Rahman, Nor Aini;Shirai, Yoshihito;Shimizu, Kazuyuki;Hassan, Mohd Ali
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.5
    • /
    • pp.281-288
    • /
    • 2002
  • Recombinant Escherichia coli strain harboring the ${\lambda}$pR-pL promotor and heterologus poly-${\beta}$-hydroxybutyrate (PHB) biosynthesis genes was used to investigate the effect of culture conditions on the efficient PHB production. The expression of phb genes was induced by a temperature upshift from $33^{\circ}C\;to\;38^{\circ}C$. The protein expression levels were measured by using two-dimensional electrophoresis, and the enzyme activities were also measured to understand the effect of culture temperature, carbon sources, and the dissolved oxygen (DO) concentration on the metabolic regulations. AcetylCoA is an important branch point for PHB production. The decrease in DO concentration lowers the citrate synthase activity, thus limit the flux toward the TCA cycle, and increase the flux for PHB production. Since NADPH is required for PHB production, the PHB production does not continue leading the overproduction of acetate and lac-tate. Based on these observations, a new operation was considered where DO concentration was changed periodically, and it was verified its usefulness for the efficient PHB production by experiments.

Expression, purification and characterization of ubiquitin-specific pretense 1 for hydrolysis of ubiquitin-fused human growth hormone expressed in recombinant Escherichia coli

  • Na, Gang-In;Seo, Jin-Ho
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.554-556
    • /
    • 2003
  • This research was focused on expression, purification and characterization of ubiquitin-specific protease 1 (UBP1) expressed in recombinant Escherichia coli. Various systems were constructed by fusing polycationic fusion tails or fusion partners to the C- or N-terminus of the product protein. In particular, UBP1 containing 6 histidine residues at the N-terminal end showed best results in terms of expression level and purification efficiency. The N-terminal $6{\times}His-tagged$ UBP1 was overproduced in recombinant E. coli using high cell density cultivation technology and purified using immobilized metal affinity chromatography. The molecular weight of UBP1 was found to be 83,500 daltons. The optimum temperature and pH for the enzyme reaction when ubiquitin-human growth hormone (hGH) was used as a substrate were $40^{\circ}C$ and pH 8.0, respectively.

  • PDF

High-Level Expression in Escherichia coli of Alkaline Phosphatase from Thermus caldophilus GK24 and Purification of the Recombinant Enzyme

  • Lee, Jung-Ha;Cho, Yong-Duk;Choi, Jeong-Jin;Lee, Yoon-Jin;Hoe, Hyang-Sook;Kim, Hyun-Kyu;Kwon, Suk-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.660-665
    • /
    • 2003
  • High-level expression of Thermus caldophilus GK24 alkaline phosphatase (Tca APase) was achieved in Escherichia coli using the pET-based expression plasmids, pEAP1 and pEAP2. In the case of plasmid pEAP2, the signal peptide region of Tca APase was replaced by the PelB leader peptide of expression vector pET-22b(+). Furthermore, the expression level was somewhat higher than that of plasmid pEAPl. A rapid purification procedure of Tca APase overproduced in E. coli was developed which involved heating to denature E. coli proteins followed by HiTrap Heparin HP column chromatography. Optimal temperature and pH and $Mg^{2+}$ dependence of the recombinant Tca APase were similar to those of native enzyme isolated from T. caldophilus GK24.

Transformation of Terpene Synthase from Polyporus brumalis in Pichia pastoris for Recombinant Enzyme Production

  • An, Ji-Eun;Lee, Su-Yeon;Ryu, Sun-Hwa;Kim, Myungkil
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.415-422
    • /
    • 2018
  • Terpenoids have a wide range of biological functions and have extensive applications in the pharmaceutical, cosmetic, and flavoring industry. The white-rot fungus, Polyporus brumalis, is able to synthesize terpenoids via terpene synthase, which catalyzes an important step that forms a large variety of sesquiterpene products from farnesyl pyrophosphate (FPP). To improve the production of sesquiterpenes, the terpene synthase gene was isolated from Polyporus brumalis and was heterologously transformed into a Pichia pastoris strain. The open reading frame of the isolated gene (approximately 1.2 kb) was inserted into Pichia pastoris to obtain a recombinant enzyme. Five transformants were obtained and the expression of terpene synthase was analyzed at the transcript level by reverse transcription PCR (polymerase chain reaction) and at the protein level by SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis). Expression of the terpene synthase gene product was elevated in the transformants and as expected the molecular weight of the protein was approximately 45 kDa. These recombinant enzymes have potential practical applications and future studies should focus on their functional characterization.

Molecular Cloning and Characterization of Maltooligosyltrehalose Synthase Gene from Nostoc flagelliforme

  • Wu, Shuangxiu;Shen, Rongrong;Zhang, Xiu;Wang, Quanxi
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.579-586
    • /
    • 2010
  • A genomic DNA fragment encoding a putative maltooligosyltrehalose synthase (NfMTS) for trehalose biosynthesis was cloned by the degenerate primer-PCR from cyanobacterium Nostoc flagelliforme. The ORF of NfMTS was 2,799 bp in length and encoded 933 amino acid residues constituting a 106.6 kDa protein. The deduced amino acid sequence of NfMTS contained 4 regions highly conserved for MTSs. By expression of NfMTS in E. coli, it was demonstrated that the recombinant protein catalyzed the conversion of maltohexaose to maltooligosyl trehalose. The $K_m$ of the recombinant enzyme for maltohexaose was 1.87 mM and the optimal temperature and pH of the recombinant enzyme was at $50^{\circ}C$ and 7.0, respectively. The expression of MTS of N. flagelliforme was upregulated, and both trehalose and sucrose contents increased significantly in N. flagelliforme during drought stress. However, trehalose accumulated in small quantities (about 0.36 mg/g DW), whereas sucrose accumulated in high quantities (about 0.90 mg/g DW), indicating both trehalose and sucrose were involved in dehydration stress response in N. flagelliforme and sucrose might act as a chemical chaperone rather than trehalose did during dehydration stress.

Molecular Colning and Ewpression of the $\alpha$-L-Arabinofuranosidase Gene of Bacillus stearothermophilus in Escherichia coli (Bacillus stearothermophilus로부터 $\alpha$-L-Arabinofuranosidase 유전자의 클로닝 및 Escherichia coli에서의 발현)

  • Eom, Soo-Jung;Kim, Hee-Sun;Cho, Ssang-Goo;Choi, Yong-Jin
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.6
    • /
    • pp.607-613
    • /
    • 1994
  • The Bacillus stearothermophilus arfI gene encoding a-arabinofuranosidase was isolated from the genomic library, cloned into pBR322, and subsequently transferred into the Escherichia coli HB101. The recombinant E. coli was selected from approximately 10,000 transformants screened by making use of its ability to produce a yellow pigment around the colony on the selective medium supplemented with p-nitrophenyl-$\alpha$-L-arabinofuranoside (pNPAf), a chromogenic substrate. The functional clone was found to harbor a recombinant plasmid, pKMG11 with an insertion of about 5 kb derived from the B. stearothermophilus chromosomal DNA. Identity of the arfI gene on the insert DNA was confirmed by a zymogram with 4-methylumbelliferyl-$\alpha$-L-arabinofuranoside as the enzyme substrate. The $\alpha$-arabinofuranosidase from the recombinant E. coli strain showed very high substrate specificity; the enzyme displayed high activity only with pNPAf among many other p- or $o$-nitrophenyl derivatives of several sugars, and acted only on arabinoxylan among various natural arabinose containing polysaccharides tested.

  • PDF

Saci_1816: A Trehalase that Catalyzes Trehalose Degradation in the Thermoacidophilic Crenarchaeon Sulfolobus acidocaldarius

  • Lee, Junho;Lee, Areum;Moon, Keumok;Choi, Kyoung-Hwa;Cha, Jaeho
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.909-916
    • /
    • 2018
  • Previously, a cytosolic trehalase (TreH) from the hyperthermophilic archaeon Sulfolobus acidocaldarius was reported; however, the gene responsible for the trehalase activity was not identified. Two genes, saci_1816 and saci_1250, that encode the glycoside hydrolase family 15 type glucoamylase-like proteins in S. acidocaldarius were targeted and expressed in Escherichia coli, and their abilities to hydrolyze trehalose were examined. Recombinant Saci_1816 hydrolyzed trehalose exclusively without any help from a cofactor. The mass spectrometric analysis of partially purified native TreH also confirmed that Saci_1816 was involved in proteins exhibiting trehalase activity. Optimal trehalose hydrolysis activity of the recombinant Saci_1816 was observed at pH 4.0 and $60^{\circ}C$. The pH dependence of the recombinant enzyme was similar to that of the native enzyme, but its optimal temperature was $20-25^{\circ}C$ lower, and its thermostability was also slightly reduced. From the biochemical and structural results, Saci_1816 was identified as a trehalase responsible for trehalose degradation in S. acidocaldarius. Identification of the treH gene confirms that the degradation of trehalose in Sulfolobus species occurs via the TreH pathway.

Effect of Arginine Modification of Cytosolic Component $p47^{phox}$ by Phenylglyoxal on the Activation of Respiratory Burst Oxidase in Human Neutrophils

  • Park, Jeen-Woo
    • BMB Reports
    • /
    • v.29 no.6
    • /
    • pp.507-512
    • /
    • 1996
  • The NADPH oxidase of phagocytes catalyzes the reduction of oxygen to $O_{2}^{-}$ at the expense of NADPH The enzyme is dormant in resting neutrophils and hecomes activated on stimulation. During activation. $p47^{phox}$ (phagocyte oxidase factor), a cytosolic oxidase subunit, becomes extensively phosphorylated on a number of serines located between S303-S379. Although the biochemical role of phosphorylation is speculative, it has been suggested that phosphorylation could neutralize the strongly cationic C-terminal which may result in the change of conformation of $p47^{phox}$ and subsequent translocation of this protein and other cytosolic components to the membrane. In order to mimic the effect of phosphorylation in terms of neutralizing the positive charges, recombinant $p47^{phox}$ was treated with phenylglyoxal, which removes positive charges of arginine residues. Modification of recombinant $p47^{phox}$ resulted in the activation of oxidase in a cell-free translocation system as well as a conformational change in recombinant $p47^{phox}$ which may be responsible for the activation of the enzyme.

  • PDF

Separation and Purification of Useful Proteins Using Hydrogel Ultratiltration

  • Park, Chang-Ho;Son, Chang-Kyu;Park, Jong-Hwa;Chung, In-Sik
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.2 no.2
    • /
    • pp.113-116
    • /
    • 1997
  • The hydrogel process is a different form of ultrafiltration and has been used to separate biological molecules. In this study, the gel pore size was predicted by pulse NMR technique and neural network using a database obtained from gel filtration chromatography and diffusion experiment. Recombinant alkaline phosphatase expressed in insect cells was concentratred 1.5 times by hydrogel ultrafiltration by swelling at 2$0^{\circ}C$ and collapsing at 35$^{\circ}C$ at 53-65% separation efficiency and 78-83% enzyme recovery. Wild and recombinant Autographa californica unclear polyhedrosis viruses (AcNPV) were also concentrated 1.4 and 1.6 times of the feed solution at 48.5 and 60.0% separation efficiency, respectively Hydrogel ultrafiltration appears to be an attractive alternative for the concentration of AcNPV and recombinant proteins from insect cells.

  • PDF