• 제목/요약/키워드: recognition time

검색결과 4,032건 처리시간 0.034초

시간 동기 비터비 빔 탐색을 위한 인식 시간 감축법 (Recognition Time Reduction Technique for the Time-synchronous Viterbi Beam Search)

  • 이강성
    • 한국음향학회지
    • /
    • 제20권6호
    • /
    • pp.46-50
    • /
    • 2001
  • 본 논문은 HMM (Hidden Markov Model) 음성 인식 시스템에 적용할 수 있는 새로운 인식 시간 알고리즘인 스코아 캐쉬기법을 제안한다. 다른 많은 기법들이 인식 시간을 줄이면서 계산량을 줄이기 위하여 어느 정도의 인식율 저하를 감수하는 반면에 제안하는 스코아 캐쉬기법은 인식율 저하를 전혀 일으키지 않으면서 인식 시간을 상당량 줄일 수 있는 기법이다. 단독어 인식 시스템에 적용 가능할 뿐 아니라 연속어 인식에도 적용이 가능하며, 기존에 이미 설계된 인식 시스템의 구조를 전혀 흩트리지 않고 간단히 하나의 함수만 대치함으로서 인식시간을 크게 감축할 수 있다 또한 기존의 계산량 감축 알고리즘과 함께 적용 가능하므로 추가의 계산량 감소를 얻을 수 있다. 스코아 캐쉬 기법을 적용한 결과 최대 54% 만큼 계산량을 줄일 수 있었다.

  • PDF

자동차 환경에서 Oak DSP 코어 기반 음성 인식 시스템 실시간 구현 (A Real-Time Implementation of Speech Recognition System Using Oak DSP core in the Car Noise Environment)

  • 우경호;양태영;이충용;윤대희;차일환
    • 음성과학
    • /
    • 제6권
    • /
    • pp.219-233
    • /
    • 1999
  • This paper presents a real-time implementation of a speaker independent speech recognition system based on a discrete hidden markov model(DHMM). This system is developed for a car navigation system to design on-chip VLSI system of speech recognition which is used by fixed point Oak DSP core of DSP GROUP LTD. We analyze recognition procedure with C language to implement fixed point real-time algorithms. Based on the analyses, we improve the algorithms which are possible to operate in real-time, and can verify the recognition result at the same time as speech ends, by processing all recognition routines within a frame. A car noise is the colored noise concentrated heavily on the low frequency segment under 400 Hz. For the noise robust processing, the high pass filtering and the liftering on the distance measure of feature vectors are applied to the recognition system. Recognition experiments on the twelve isolated command words were performed. The recognition rates of the baseline recognizer were 98.68% in a stopping situation and 80.7% in a running situation. Using the noise processing methods, the recognition rates were enhanced to 89.04% in a running situation.

  • PDF

기계학습 기반의 실시간 이미지 인식 알고리즘의 성능 (Performance of Real-time Image Recognition Algorithm Based on Machine Learning)

  • 선영규;황유민;홍승관;김진영
    • 한국위성정보통신학회논문지
    • /
    • 제12권3호
    • /
    • pp.69-73
    • /
    • 2017
  • 본 논문에서는 기계학습 기반의 실시간 이미지 인식 알고리즘을 개발하고 개발한 알고리즘의 성능을 테스트 하였다. 실시간 이미지 인식 알고리즘은 기계 학습된 이미지 데이터를 바탕으로 실시간으로 입력되는 이미지를 인식한다. 개발한 실시간 이미지 인식 알고리즘의 성능을 테스트하기 위해 자율주행 자동차 분야에 적용해보았고 이를 통해 개발한 실시간 이미지 인식 알고리즘의 성능을 확인해보았다.

An Efficient Face Recognition using Feature Filter and Subspace Projection Method

  • Lee, Minkyu;Choi, Jaesung;Lee, Sangyoun
    • Journal of International Society for Simulation Surgery
    • /
    • 제2권2호
    • /
    • pp.64-66
    • /
    • 2015
  • Purpose : In this paper we proposed cascade feature filter and projection method for rapid human face recognition for the large-scale high-dimensional face database. Materials and Methods : The relevant features are selected from the large feature set using Fast Correlation-Based Filter method. After feature selection, project them into discriminant using Principal Component Analysis or Linear Discriminant Analysis. Their cascade method reduces the time-complexity without significant degradation of the performance. Results : In our experiments, the ORL database and the extended Yale face database b were used for evaluation. On the ORL database, the processing time was approximately 30-times faster than typical approach with recognition rate 94.22% and on the extended Yale face database b, the processing time was approximately 300-times faster than typical approach with recognition rate 98.74 %. Conclusion : The recognition rate and time-complexity of the proposed method is suitable for real-time face recognition system on the large-scale high-dimensional face database.

A Search Model Using Time Interval Variation to Identify Face Recognition Results

  • Choi, Yun-seok;Lee, Wan Yeon
    • International journal of advanced smart convergence
    • /
    • 제11권3호
    • /
    • pp.64-71
    • /
    • 2022
  • Various types of attendance management systems are being introduced in a remote working environment and research on using face recognition is in progress. To ensure accurate worker's attendance, a face recognition-based attendance management system must analyze every frame of video, but face recognition is a heavy task, the number of the task should be minimized without affecting accuracy. In this paper, we proposed a search model using time interval variation to minimize the number of face recognition task of recorded videos for attendance management system. The proposed model performs face recognition by changing the interval of the frame identification time when there is no change in the attendance status for a certain period. When a change in the face recognition status occurs, it moves in the reverse direction and performs frame checks to more accurate attendance time checking. The implementation of proposed model performed at least 4.5 times faster than all frame identification and showed at least 97% accuracy.

시간 지연을 갖는 쌍전파 신경회로망을 이용한 근전도 신호인식에 관한 연구 (A Study on EMG Signals Recognition using Time Delayed Counterpropagation Neural Network)

  • 권장우;정인길;홍승홍
    • 대한의용생체공학회:의공학회지
    • /
    • 제17권3호
    • /
    • pp.395-401
    • /
    • 1996
  • In this paper a new neural network model, time delayed counterpropagation neural networks (TDCPN) which have high recognition rate and short total learning time, is proposed for electromyogram(EMG) recognition. Signals the proposed model increases the recognition rates after learned the regional temporal correlation of patterns using time delay properties in input layer, and decreases the learning time by using winner-takes-all learning rule. The ouotar learning rule is put at the output layer so that the input pattern is able to map a desired output. We test the performance of this model with EMG signals collected from a normal subject. Experimental results show that the recognition rates of the suggested model is better and the learning time is shorter than those of TDNN and CPN.

  • PDF

Implementation of Real-time Wheel Order Recognition System Based on the Predictive Parameters for Speaker's Intention

  • Moon, Serng-Bae;Jun, Seung-Hwan
    • 한국항해항만학회지
    • /
    • 제35권7호
    • /
    • pp.551-556
    • /
    • 2011
  • In this paper new enhanced post-process predicting the speaker's intention was suggested to implement the real-time control module for ship's autopilot using speech recognition algorithm. The parameter was developed to predict the likeliest wheel order based on the previous order and expected to increase the recognition rate more than pre-recognition process depending on the universal speech recognition algorithms. The values of parameter were assessed by five certified deck officers being good at conning vessel. And the entire wheel order recognition process were programmed to TMS320C5416 DSP so that the system could recognize the speaker's orders and control the autopilot in real-time. We conducted some experiments to verify the usefulness of suggested module. As a result, we have confirmed that the post-recognition process module could make good enough accuracy in recognition capabilities to realize the autopilot being operated by the speech recognition system.

화자독립방식에 의한 음성인식 알고리즘 개발 및 실시간 실현에 관한 연구 (A Study on Development and Real-Time Implementation of Voice Recognition Algorithm)

  • 정양근;조상영;양준석;;한성현
    • 한국산업융합학회 논문집
    • /
    • 제18권4호
    • /
    • pp.250-258
    • /
    • 2015
  • In this research, we proposed a new approach to implement the real-time motion control of biped robot based on voice command for unmanned FA. Voice is one of convenient methods to communicate between human and robots. To command a lot of robot task by voice, voice of the same number have to be able to be recognition voice is, the higher the time of recognition is. In this paper, a practical voice recognition system which can recognition a lot of task commands is proposed. The proposed system consists of a general purpose microprocessor and a useful voice recognition processor which can recognize a limited number of voice patterns. Given biped robots, each robot task is, classified and organized such that the number of robot tasks under each directory is net more than the maximum recognition number of the voice recognition processor so that robot tasks under each directory can be distinguished by the voice recognition command. By simulation and experiment, it was illustrated the reliability of voice recognition rates for application of the manufacturing process.

사람 행동 인식에서 반복 감소를 위한 저수준 사람 행동 변화 감지 방법 (Detection of Low-Level Human Action Change for Reducing Repetitive Tasks in Human Action Recognition)

  • 노요환;김민정;이도훈
    • 한국멀티미디어학회논문지
    • /
    • 제22권4호
    • /
    • pp.432-442
    • /
    • 2019
  • Most current human action recognition methods based on deep learning methods. It is required, however, a very high computational cost. In this paper, we propose an action change detection method to reduce repetitive human action recognition tasks. In reality, simple actions are often repeated and it is time consuming process to apply high cost action recognition methods on repeated actions. The proposed method decides whether action has changed. The action recognition is executed only when it has detected action change. The action change detection process is as follows. First, extract the number of non-zero pixel from motion history image and generate one-dimensional time-series data. Second, detecting action change by comparison of difference between current time trend and local extremum of time-series data and threshold. Experiments on the proposed method achieved 89% balanced accuracy on action change data and 61% reduced action recognition repetition.

Intelligent Activity Recognition based on Improved Convolutional Neural Network

  • Park, Jin-Ho;Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제25권6호
    • /
    • pp.807-818
    • /
    • 2022
  • In order to further improve the accuracy and time efficiency of behavior recognition in intelligent monitoring scenarios, a human behavior recognition algorithm based on YOLO combined with LSTM and CNN is proposed. Using the real-time nature of YOLO target detection, firstly, the specific behavior in the surveillance video is detected in real time, and the depth feature extraction is performed after obtaining the target size, location and other information; Then, remove noise data from irrelevant areas in the image; Finally, combined with LSTM modeling and processing time series, the final behavior discrimination is made for the behavior action sequence in the surveillance video. Experiments in the MSR and KTH datasets show that the average recognition rate of each behavior reaches 98.42% and 96.6%, and the average recognition speed reaches 210ms and 220ms. The method in this paper has a good effect on the intelligence behavior recognition.