• Title/Summary/Keyword: recognition task

Search Result 619, Processing Time 0.034 seconds

Clinical Study for YMG-1, 2's Effects on Learning and Memory Abilities (육미지황탕가감방-1, 2가 학습과 기억능력에 미치는 영향에 관한 임상연구)

  • Park Eun Hye;Chung Myung Suk;Park Chang Bum;Chi Sang Eun;Lee Young Hyurk;Bae Hyun Su;Shin Min Kyu;Kim Hyun taek;Hong Moo Chang
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.5
    • /
    • pp.976-988
    • /
    • 2002
  • The aim of this study was to examine the memory and attention enhancement effect of YMG-1 and YMG-2, which are modified herbal extracts from Yukmijihwang-tang (YMJ). YMJ, composing six herbal medicine, has been used for restoring the normal functions of the body to consolidate the constitution, nourishing and invigorating the kidney functions for hundreds years in Asian countries. A series of studies reported that YMJ and its components enhance memory retention, protects neuronal cell from reactive oxygen attack and boost immune activities. Recently the microarray analysis suggested that YMG-1 protects neurodegeneration through modulating various neuron specific genes. A total of 55 subjects were divided into three groups according to the treatment of YMG-1 (n=20), YMG-2 (n=20) and control (C; n=15) groups. Before treatments, all of subjects were subjected to the assessments on neuropsychological tests of K-WAIS test, Rey-Kim memory test, and psychophysiological test of Event-Related Potential (ERP) during auditory oddball task and repeated word recognition task. They were repeatedly assessed with the same methods after drug treatment for 6 weeks. Although no significant effect of drug was found in Rey-Kim memory test, a significant interaction (P = .010, P < 0.05) between YMG-2 and C groups was identified in the scores digit span and block design, which are the subscales of K-WAIS. The very similar but marginal interaction (P = .064) between YMG-1 and C groups was found too. In ERP analysis, only YMG-1 group showed decreasing tendency of P300 latency during oddball task while the others tended to increase, and it caused significant interaction between session and group (p= .004). This result implies the enhancement of cognitive function in due to consideration of relationship between P300 latency and the speed of information processing. However, no evidence which could demonstrate the significant drug effect was found in neither amplitude or latency. These results come together suggest that YMG-1, 2 may enhance the attention, resulting in enhancement of memory processing. For elucidating detailed mechanism of YMG on learning and memory, the further studies are necessary.

Pattern classification of the synchronized EEG records by an auditory stimulus for human-computer interface (인간-컴퓨터 인터페이스를 위한 청각 동기방식 뇌파신호의 패턴 분류)

  • Lee, Yong-Hee;Choi, Chun-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.12
    • /
    • pp.2349-2356
    • /
    • 2008
  • In this paper, we present the method to effectively extract and classify the EEG caused by only brain activity when a normal subject is in a state of mental activity. We measure the synchronous EEG on the auditory event when a subject who is in a normal state thinks of a specific task, and then shift the baseline and reduce the effect of biological artifacts on the measured EEG. Finally we extract only the mental task signal by averaging method, and then perform the recognition of the extracted mental task signal by computing the AR coefficients. In the experiment, the auditory stimulus is used as an event and the EEG was recorded from the three channel $C_3-A_1$, $C_4-A_2$ and $P_Z-A_1$. After averaging 16 times for each channel output, we extracted the features of specific mental tasks by modeling the output as 12th order AR coefficients. We used total 36th order coefficient as an input parameter of the neural network and measured the training data 50 times per each task. With data not used for training, the rate of task recognition is 34-92 percent on the two tasks, and 38-54 percent on the four tasks.

Segmentation-free Recognition of Touching Numeral Pairs (두자 접촉 숫자열의 분할 자유 인식)

  • Choi, Soon-Man;Oh, Il-Seok
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.5
    • /
    • pp.563-574
    • /
    • 2000
  • Recognition of numeral fields is a very important task for many document automation applications. Conventional methods are based on the two-steps process, segmentation of touching numerals and recognition of the individual numerals. However, due to a large variation of touching types this approach has not produced a robust result. In this paper, we present a new segmentation-free method for recognizing the two touching numerals. In this approach, two touching numerals are regarded as a single pattern coming from 100 classes ('00', '01', '02', ..., '98', '99'). For the test set, we manually extract two touching numerals from the data set of NIST numeral fields. Due to the limitation of conventional neural network in case of large-set classification, we use a modular neural network and Drove its superiority through recognition experimen.

  • PDF

Children's Emotion Recognition, Emotion Expression, and Social Interactions According to Attachment Styles (애착 유형에 따른 아동의 정서인식, 정서표현 및 상호작용)

  • Choi, Eun-Sil;Bost, Kelly
    • Korean Journal of Child Studies
    • /
    • v.33 no.2
    • /
    • pp.55-68
    • /
    • 2012
  • The goals of this study were to examine how children's recognition of various emotions, emotion expression, and social interactions among their peers differed according to their attachment styles. A total of 65 three to five years old children completed both attachment story-stem doll plays and a standard emotion recognition task. Trained observers documented children's valence of emotion expression and social interactions among their peers in the classroom. Consistent with attachment theory, children who were categorized as secure in the doll play were more likely to express positive emotions than children who were categorized as avoidant in the doll play. Children who were categorized as avoidant in the doll play were more likely to express neutral emotions among their peers than children who were categorized as secure and anxious in the doll play. The findings of this study contribute to the general attachment literature by documenting how attachment security plays a crucial role in having positive emotions in ordinary situations. It does so by also demonstrating how different attachment styles are associated with children's qualitatively different patterns of emotion processing, especially in terms of their expression of emotions.

Self-Adaptation Algorithm Based on Maximum A Posteriori Eigenvoice for Korean Connected Digit Recognition (한국어 연결 숫자음 인식을 일한 최대 사후 Eigenvoice에 근거한 자기적응 기법)

  • Kim Dong Kook;Jeon Hyung Bae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.8
    • /
    • pp.590-596
    • /
    • 2004
  • This paper Presents a new self-adaptation algorithm based on maximum a posteriori (MAP) eigenvoice for Korean connected digit recognition. The proposed MAP eigenvoice is developed by introducing a probability density model for the eigenvoice coefficients. The Proposed approach provides a unified framework that incorporates the Prior model into the conventional eigenvoice estimation. In self-adaptation system we use only one adaptation utterance that will be recognized, we use MAP eigenvoice that is most robust adaptation. In series of self-adaptation experiments on the Korean connected digit recognition task. we demonstrate that the performance of the proposed approach is better than that of the conventional eigenvoice algorithm for a small amount of adaptation data.

Vision Based Sensor Fusion System of Biped Walking Robot for Environment Recognition (영상 기반 센서 융합을 이용한 이쪽로봇에서의 환경 인식 시스템의 개발)

  • Song, Hee-Jun;Lee, Seon-Gu;Kang, Tae-Gu;Kim, Dong-Won;Seo, Sam-Jun;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.123-125
    • /
    • 2006
  • This paper discusses the method of vision based sensor fusion system for biped robot walking. Most researches on biped walking robot have mostly focused on walking algorithm itself. However, developing vision systems for biped walking robot is an important and urgent issue since biped walking robots are ultimately developed not only for researches but to be utilized in real life. In the research, systems for environment recognition and tole-operation have been developed for task assignment and execution of biped robot as well as for human robot interaction (HRI) system. For carrying out certain tasks, an object tracking system using modified optical flow algorithm and obstacle recognition system using enhanced template matching and hierarchical support vector machine algorithm by wireless vision camera are implemented with sensor fusion system using other sensors installed in a biped walking robot. Also systems for robot manipulating and communication with user have been developed for robot.

  • PDF

Named Entity Recognition with Structural SVMs and Pegasos algorithm (Structural SVMs 및 Pegasos 알고리즘을 이용한 한국어 개체명 인식)

  • Lee, Chang-Ki;Jang, Myun-Gil
    • Korean Journal of Cognitive Science
    • /
    • v.21 no.4
    • /
    • pp.655-667
    • /
    • 2010
  • The named entity recognition task is one of the most important subtasks in Information Extraction. In this paper, we describe a Korean named entity recognition using structural Support Vector Machines (structural SVMs) and modified Pegasos algorithm. Using the proposed approach, we could achieve an 85.43% F1 and an 86.79% F1 for 15 named entity types on TV domain and sports domain, respectively. Moreover, we reduced the training time to 4% without loss of performance compared to Conditional Random Fields (CRFs).

  • PDF

Human Activity Recognition in Smart Homes Based on a Difference of Convex Programming Problem

  • Ghasemi, Vahid;Pouyan, Ali A.;Sharifi, Mohsen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.321-344
    • /
    • 2017
  • Smart homes are the new generation of homes where pervasive computing is employed to make the lives of the residents more convenient. Human activity recognition (HAR) is a fundamental task in these environments. Since critical decisions will be made based on HAR results, accurate recognition of human activities with low uncertainty is of crucial importance. In this paper, a novel HAR method based on a difference of convex programming (DCP) problem is represented, which manages to handle uncertainty. For this purpose, given an input sensor data stream, a primary belief in each activity is calculated for the sensor events. Since the primary beliefs are calculated based on some abstractions, they naturally bear an amount of uncertainty. To mitigate the effect of the uncertainty, a DCP problem is defined and solved to yield secondary beliefs. In this procedure, the uncertainty stemming from a sensor event is alleviated by its neighboring sensor events in the input stream. The final activity inference is based on the secondary beliefs. The proposed method is evaluated using a well-known and publicly available dataset. It is compared to four HAR schemes, which are based on temporal probabilistic graphical models, and a convex optimization-based HAR procedure, as benchmarks. The proposed method outperforms the benchmarks, having an acceptable accuracy of 82.61%, and an average F-measure of 82.3%.

PharmacoNER Tagger: a deep learning-based tool for automatically finding chemicals and drugs in Spanish medical texts

  • Armengol-Estape, Jordi;Soares, Felipe;Marimon, Montserrat;Krallinger, Martin
    • Genomics & Informatics
    • /
    • v.17 no.2
    • /
    • pp.15.1-15.7
    • /
    • 2019
  • Automatically detecting mentions of pharmaceutical drugs and chemical substances is key for the subsequent extraction of relations of chemicals with other biomedical entities such as genes, proteins, diseases, adverse reactions or symptoms. The identification of drug mentions is also a prior step for complex event types such as drug dosage recognition, duration of medical treatments or drug repurposing. Formally, this task is known as named entity recognition (NER), meaning automatically identifying mentions of predefined entities of interest in running text. In the domain of medical texts, for chemical entity recognition (CER), techniques based on hand-crafted rules and graph-based models can provide adequate performance. In the recent years, the field of natural language processing has mainly pivoted to deep learning and state-of-the-art results for most tasks involving natural language are usually obtained with artificial neural networks. Competitive resources for drug name recognition in English medical texts are already available and heavily used, while for other languages such as Spanish these tools, although clearly needed were missing. In this work, we adapt an existing neural NER system, NeuroNER, to the particular domain of Spanish clinical case texts, and extend the neural network to be able to take into account additional features apart from the plain text. NeuroNER can be considered a competitive baseline system for Spanish drug and CER promoted by the Spanish national plan for the advancement of language technologies (Plan TL).

A review of Chinese named entity recognition

  • Cheng, Jieren;Liu, Jingxin;Xu, Xinbin;Xia, Dongwan;Liu, Le;Sheng, Victor S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2012-2030
    • /
    • 2021
  • Named Entity Recognition (NER) is used to identify entity nouns in the corpus such as Location, Person and Organization, etc. NER is also an important basic of research in various natural language fields. The processing of Chinese NER has some unique difficulties, for example, there is no obvious segmentation boundary between each Chinese character in a Chinese sentence. The Chinese NER task is often combined with Chinese word segmentation, and so on. In response to these problems, we summarize the recognition methods of Chinese NER. In this review, we first introduce the sequence labeling system and evaluation metrics of NER. Then, we divide Chinese NER methods into rule-based methods, statistics-based machine learning methods and deep learning-based methods. Subsequently, we analyze in detail the model framework based on deep learning and the typical Chinese NER methods. Finally, we put forward the current challenges and future research directions of Chinese NER technology.