• 제목/요약/키워드: recognition rate

Search Result 2,807, Processing Time 0.032 seconds

Design of detection method for smoking based on Deep Neural Network (딥뉴럴네트워크 기반의 흡연 탐지기법 설계)

  • Lee, Sanghyun;Yoon, Hyunsoo;Kwon, Hyun
    • Convergence Security Journal
    • /
    • v.21 no.1
    • /
    • pp.191-200
    • /
    • 2021
  • Artificial intelligence technology is developing in an environment where a lot of data is produced due to the development of computing technology, a cloud environment that can store data, and the spread of personal mobile phones. Among these artificial intelligence technologies, the deep neural network provides excellent performance in image recognition and image classification. There have been many studies on image detection for forest fires and fire prevention using such a deep neural network, but studies on detection of cigarette smoking were insufficient. Meanwhile, military units are establishing surveillance systems for various facilities through CCTV, and it is necessary to detect smoking near ammunition stores or non-smoking areas to prevent fires and explosions. In this paper, by reflecting experimentally optimized numerical values such as activation function and learning rate, we did the detection of smoking pictures and non-smoking pictures in two cases. As experimental data, data was constructed by crawling using pictures of smoking and non-smoking published on the Internet, and a machine learning library was used. As a result of the experiment, when the learning rate is 0.004 and the optimization algorithm Adam is used, it can be seen that the accuracy of 93% and F1-score of 94% are obtained.

Comparative Analysis of CNN Deep Learning Model Performance Based on Quantification Application for High-Speed Marine Object Classification (고속 해상 객체 분류를 위한 양자화 적용 기반 CNN 딥러닝 모델 성능 비교 분석)

  • Lee, Seong-Ju;Lee, Hyo-Chan;Song, Hyun-Hak;Jeon, Ho-Seok;Im, Tae-ho
    • Journal of Internet Computing and Services
    • /
    • v.22 no.2
    • /
    • pp.59-68
    • /
    • 2021
  • As artificial intelligence(AI) technologies, which have made rapid growth recently, began to be applied to the marine environment such as ships, there have been active researches on the application of CNN-based models specialized for digital videos. In E-Navigation service, which is combined with various technologies to detect floating objects of clash risk to reduce human errors and prevent fires inside ships, real-time processing is of huge importance. More functions added, however, mean a need for high-performance processes, which raises prices and poses a cost burden on shipowners. This study thus set out to propose a method capable of processing information at a high rate while maintaining the accuracy by applying Quantization techniques of a deep learning model. First, videos were pre-processed fit for the detection of floating matters in the sea to ensure the efficient transmission of video data to the deep learning entry. Secondly, the quantization technique, one of lightweight techniques for a deep learning model, was applied to reduce the usage rate of memory and increase the processing speed. Finally, the proposed deep learning model to which video pre-processing and quantization were applied was applied to various embedded boards to measure its accuracy and processing speed and test its performance. The proposed method was able to reduce the usage of memory capacity four times and improve the processing speed about four to five times while maintaining the old accuracy of recognition.

A Study on the School Library Staffs' Perceptions of School Library Evaluation (학교도서관 운영평가에 대한 학교도서관 전담인력의 인식 분석)

  • Kang, Bong-Suk
    • Journal of Korean Library and Information Science Society
    • /
    • v.50 no.1
    • /
    • pp.293-312
    • /
    • 2019
  • The purpose of this study is to find ways to improve the evaluation system of school library operation whose participation rate is getting lower. We conducted analyzing the current status of operating evaluation of school libraries through literature search. In doing so, questionnaire method was conducted to inquire the recognition of the 205 staff members of school libraries. The outcome of the survey shows that the participation rate of operating evaluation of school libraries decreased from 22.2% in 2009 to 7.2% in 2017. The validity of the quantitative evaluation method was significantly low at 2.84 and the validity of the qualitative evaluation method was 2.97. The average score of the validity index for 'Establishing the annual operation plan' was the highest at 3.90, and that of 'Community service' was the lowest at 2.27. The biggest reason for not participating in the evaluation was due to the staff's high workload. There is a need to seek ways to improve the evaluation index and ways to participate since the result shows very low awareness of the school library evaluation. Through this study, it is expected that the school library evaluation will become the foundation for effective revitalization of school library operation.

A Comparison of Pre-Processing Techniques for Enhanced Identification of Paralichthys olivaceus Disease based on Deep Learning (딥러닝 기반 넙치 질병 식별 향상을 위한 전처리 기법 비교)

  • Kang, Ja Young;Son, Hyun Seung;Choi, Han Suk
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.3
    • /
    • pp.71-80
    • /
    • 2022
  • In the past, fish diseases were bacterial in aqua farms, but in recent years, the frequency of fish diseases has increased as they have become viral and mixed. Viral diseases in an enclosed space called a aqua farm have a high spread rate, so it is very likely to lead to mass death. Fast identification of fish diseases is important to prevent group death. However, diagnosis of fish diseases requires a high level of expertise and it is difficult to visually check the condition of fish every time. In order to prevent the spread of the disease, an automatic identification system of diseases or fish is needed. In this paper, in order to improve the performance of the disease identification system of Paralichthys olivaceus based on deep learning, the existing pre-processing method is compared and tested. Target diseases were selected from three most frequent diseases such as Scutica, Vibrio, and Lymphocystis in Paralichthys olivaceus. The RGB, HLS, HSV, LAB, LUV, XYZ, and YCRCV were used as image pre-processing methods. As a result of the experiment, HLS was able to get the best results than using general RGB. It is expected that the fish disease identification system can be advanced by improving the recognition rate of diseases in a simple way.

Humanistic Study on the Balance between Work and Life (워라밸의 인문학적 성찰)

  • Cho, Yong-Ki
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.1
    • /
    • pp.121-138
    • /
    • 2019
  • A term 'Wolabal' which is an abbreviation of the words, in South Korea means the balance between work and life. The term reflects on people's thoughts to seek for their happiness these days. In fact, they think that the quality of the life is more valuable than any other things on their lives, reflecting on the issues caused by modern societies. 'Wolabal' has emerged as an alternatives to solve the social issues like economic recession, high unemployment rate, aging society, low birth rate and etc. However, in order to establish 'Wolabal' as a culture the comprehensive agreement between an individual and society should be considered first. In society, the system or policies to forster cultural business should be settled while in individual, it is necessary to change the way they think about their work and the qualities of their lives. From this view we have to focus on the relationship between their work and leisure. On the relationship between their work and leisure we should understand that the relationship is not conflicted but co-exists and understanding the real meaning of the relationship is critical in balancing between work and life. The recognition to the labor which has been from the past would give not only the meaning of individual survival but the one of their whole lives. Despite this, modern society has faded away the real meaning of labor because it has focused on the mass manufacturing and sometimes the long-termed economic sluggish has emerged. This trend has made people think about their lives and seek for their lives' real value.

The Noise Robust Algorithm to Detect the Starting Point of Music for Content Based Music Retrieval System (노이즈에 강인한 음악 시작점 검출 알고리즘)

  • Kim, Jung-Soo;Sung, Bo-Kyung;Koo, Kwang-Hyo;Ko, Il-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.9
    • /
    • pp.95-104
    • /
    • 2009
  • This paper proposes the noise robust algorithm to detect the starting point of music. Detection of starting point of music is necessary to solve computational-waste problem and retrieval-comparison problem with inconsistent input data in music content based retrieval system. In particular, such detection is even more necessary in time sequential retrieval method that compares data in the sequential order of time in contents based music retrieval system. Whereas it has the long point that the retrieval is fast since it executes simple comparison in the order of time, time sequential retrieval method has the short point that data starting time to be compared should be the same. However, digitalized music cannot guarantee the equity of starting time by bit rate conversion. Therefore, this paper ensured that recognition rate shall not decrease even while executing high speed retrieval by applying time sequential retrieval method through detection of music starting point in the pre-processing stage of retrieval. Starting point detection used minimum wave model that can detect effective sound, and for strength against noise, the noises existing in mute sound were swapped. The proposed algorithm was confirmed to produce about 38% more excellent performance than the results to which starting point detection was not applied, and was verified for the strength against noise.

Clinical pharmacist services in general wards and perception and expectation of healthcare providers towards the services at a tertiary healthcare center (상급종합병원 병동담당약사 업무 현황 및 의료인의 인식과 기대 분석)

  • Kim, Jeongun;Baek, Sijin;Choi, Nayae;Jeon, Sujeong;Namgung, Hyung Wook;Lee, Junghwa;Lee, Euni;Lee, Ju-Yeun
    • Korean Journal of Clinical Pharmacy
    • /
    • v.32 no.1
    • /
    • pp.20-26
    • /
    • 2022
  • Background and objective: The Seoul National University Bundang Hospital (SNUBH) implemented ward-based clinical pharmacy system with designated pharmacists in 10 general wards. Designated pharmacists conduct inpatient medication review, medication intervention, and medication consultation, and provide drug information for health care providers. This study aimed to evaluate the clinical pharmacy services and to examine the perception and expectations of health care providers on the services provided by the designated pharmacists in general wards. Methods: A survey was constructed to include questions on the health care providers' recognition, satisfaction, and perceived needs of designated pharmacists. We determined the frequency and type of interventions of ward pharmacist and their acceptance rate through a retrospective observational study using electronic medical records. Results: A total of 59 health care providers responded the questionnaire and 79.7% of the respondents reported moderate to high levels of satisfaction. Satisfaction with the services was positively associated with clinical interventions and nutrition support team (81.4%). Of 59 respondents, 88.1% agreed that preventing drug-related problems by designated pharmacists' activities were effective. The most common interventions included inadequate dosage (27.4%), omission and additional prescription (14.6%) and inadequate drug form (9.6%). The acceptance rate of intervention was 91.5%, and 151 potentially serious risks and 523 significant risks were prevented by the intervention. Conclusion: Positive results were confirmed in the awareness, satisfaction, and perceived needs of the health care providers for designated pharmacists. Expansion of the ward-based clinical pharmacy system with designated pharmacists to other wards may be considered.

Efficient Poisoning Attack Defense Techniques Based on Data Augmentation (데이터 증강 기반의 효율적인 포이즈닝 공격 방어 기법)

  • So-Eun Jeon;Ji-Won Ock;Min-Jeong Kim;Sa-Ra Hong;Sae-Rom Park;Il-Gu Lee
    • Convergence Security Journal
    • /
    • v.22 no.3
    • /
    • pp.25-32
    • /
    • 2022
  • Recently, the image processing industry has been activated as deep learning-based technology is introduced in the image recognition and detection field. With the development of deep learning technology, learning model vulnerabilities for adversarial attacks continue to be reported. However, studies on countermeasures against poisoning attacks that inject malicious data during learning are insufficient. The conventional countermeasure against poisoning attacks has a limitation in that it is necessary to perform a separate detection and removal operation by examining the training data each time. Therefore, in this paper, we propose a technique for reducing the attack success rate by applying modifications to the training data and inference data without a separate detection and removal process for the poison data. The One-shot kill poison attack, a clean label poison attack proposed in previous studies, was used as an attack model. The attack performance was confirmed by dividing it into a general attacker and an intelligent attacker according to the attacker's attack strategy. According to the experimental results, when the proposed defense mechanism is applied, the attack success rate can be reduced by up to 65% compared to the conventional method.

Development and mathematical performance analysis of custom GPTs-Based chatbots (GPTs 기반 문제해결 맞춤형 챗봇 제작 및 수학적 성능 분석)

  • Kwon, Misun
    • Education of Primary School Mathematics
    • /
    • v.27 no.3
    • /
    • pp.303-320
    • /
    • 2024
  • This study presents the development and performance evaluation of a custom GPT-based chatbot tailored to provide solutions following Polya's problem-solving stages. A beta version of the chatbot was initially deployed to assess its mathematical capabilities, followed by iterative error identification and correction, leading to the final version. The completed chatbot demonstrated an accuracy rate of approximately 89.0%, correctly solving an average of 57.8 out of 65 image-based problems from a 6th-grade elementary mathematics textbook, reflecting a 4 percentage point improvement over the beta version. For a subset of 50 problems, where images were not critical for problem resolution, the chatbot achieved an accuracy rate of approximately 91.0%, solving an average of 45.5 problems correctly. Predominant errors included problem recognition issues, particularly with complex or poorly recognizable images, along with concept confusion and comprehension errors. The custom chatbot exhibited superior mathematical performance compared to the general-purpose ChatGPT. Additionally, its solution process can be adapted to various grade levels, facilitating personalized student instruction. The ease of chatbot creation and customization underscores its potential for diverse applications in mathematics education, such as individualized teacher support and personalized student guidance.

The way to make training data for deep learning model to recognize keywords in product catalog image at E-commerce (온라인 쇼핑몰에서 상품 설명 이미지 내의 키워드 인식을 위한 딥러닝 훈련 데이터 자동 생성 방안)

  • Kim, Kitae;Oh, Wonseok;Lim, Geunwon;Cha, Eunwoo;Shin, Minyoung;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.1-23
    • /
    • 2018
  • From the 21st century, various high-quality services have come up with the growth of the internet or 'Information and Communication Technologies'. Especially, the scale of E-commerce industry in which Amazon and E-bay are standing out is exploding in a large way. As E-commerce grows, Customers could get what they want to buy easily while comparing various products because more products have been registered at online shopping malls. However, a problem has arisen with the growth of E-commerce. As too many products have been registered, it has become difficult for customers to search what they really need in the flood of products. When customers search for desired products with a generalized keyword, too many products have come out as a result. On the contrary, few products have been searched if customers type in details of products because concrete product-attributes have been registered rarely. In this situation, recognizing texts in images automatically with a machine can be a solution. Because bulk of product details are written in catalogs as image format, most of product information are not searched with text inputs in the current text-based searching system. It means if information in images can be converted to text format, customers can search products with product-details, which make them shop more conveniently. There are various existing OCR(Optical Character Recognition) programs which can recognize texts in images. But existing OCR programs are hard to be applied to catalog because they have problems in recognizing texts in certain circumstances, like texts are not big enough or fonts are not consistent. Therefore, this research suggests the way to recognize keywords in catalog with the Deep Learning algorithm which is state of the art in image-recognition area from 2010s. Single Shot Multibox Detector(SSD), which is a credited model for object-detection performance, can be used with structures re-designed to take into account the difference of text from object. But there is an issue that SSD model needs a lot of labeled-train data to be trained, because of the characteristic of deep learning algorithms, that it should be trained by supervised-learning. To collect data, we can try labelling location and classification information to texts in catalog manually. But if data are collected manually, many problems would come up. Some keywords would be missed because human can make mistakes while labelling train data. And it becomes too time-consuming to collect train data considering the scale of data needed or costly if a lot of workers are hired to shorten the time. Furthermore, if some specific keywords are needed to be trained, searching images that have the words would be difficult, as well. To solve the data issue, this research developed a program which create train data automatically. This program can make images which have various keywords and pictures like catalog and save location-information of keywords at the same time. With this program, not only data can be collected efficiently, but also the performance of SSD model becomes better. The SSD model recorded 81.99% of recognition rate with 20,000 data created by the program. Moreover, this research had an efficiency test of SSD model according to data differences to analyze what feature of data exert influence upon the performance of recognizing texts in images. As a result, it is figured out that the number of labeled keywords, the addition of overlapped keyword label, the existence of keywords that is not labeled, the spaces among keywords and the differences of background images are related to the performance of SSD model. This test can lead performance improvement of SSD model or other text-recognizing machine based on deep learning algorithm with high-quality data. SSD model which is re-designed to recognize texts in images and the program developed for creating train data are expected to contribute to improvement of searching system in E-commerce. Suppliers can put less time to register keywords for products and customers can search products with product-details which is written on the catalog.