• Title/Summary/Keyword: recognition algorithm

Search Result 3,552, Processing Time 0.027 seconds

A Study on Building the HD Map Prototype Based on Web GIS for the Generation of the Precise Road Maps (정밀도로지도 제작을 위한 Web GIS 기반 HD Map 프로토타입 구축 연구)

  • KWON, Yong-Ha;CHOUNG, Yun-Jae;CHO, Hyun-Ji;GU, Bon-Yup
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.2
    • /
    • pp.102-116
    • /
    • 2021
  • For the safe operation of autonomous vehicles, the representative technology of the 4th industrial revolution era, a combination of various technologies such as sensor technology, software technology and car technology is required. An autonomous vehicle is a vehicle that recognizes current location and situation by using the various sensors, and makes its own decisions without depending on the driver. Perfect recognition technology is required for fully autonomous driving. Since the precise road maps provide various road information including lanes, stop lines, traffic lights and crosswalks, it is possible to minimize the cognitive errors that occur in autonomous vehicles by using the precise road maps with location information of the road facilities. In this study, the definition, necessity and technical trends of the precise road map have been analyzed, and the HD(High Definition) map prototype based on the web GIS has been built in the autonomous driving-specialized areas of Daegu Metropolitan City(Suseong Medical District, about 24km), the Happy City of Sejong Special Self-Governing City(about 33km), and the FMTC(Future Mobility Technical Center) PG(Proving Ground) of Seoul National University Siheung Campus using the MMS(Mobile Mapping System) surveying results given by the National Geographic Information Institute. In future research, the built-in precise road map service will be installed in the autonomous vehicles and control systems to verify the real-time locations and its location correction algorithm.

Visual Verb and ActionNet Database for Semantic Visual Understanding (동영상 시맨틱 이해를 위한 시각 동사 도출 및 액션넷 데이터베이스 구축)

  • Bae, Changseok;Kim, Bo Kyeong
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.14 no.5
    • /
    • pp.19-30
    • /
    • 2018
  • Visual information understanding is known as one of the most difficult and challenging problems in the realization of machine intelligence. This paper proposes deriving visual verb and construction of ActionNet database as a video database for video semantic understanding. Even though development AI (artificial intelligence) algorithms have contributed to the large part of modern advances in AI technologies, huge amount of database for algorithm development and test plays a great role as well. As the performance of object recognition algorithms in still images are surpassing human's ability, research interests shifting to semantic understanding of video contents. This paper proposes candidates of visual verb requiring in the construction of ActionNet as a learning and test database for video understanding. In order to this, we first investigate verb taxonomy in linguistics, and then propose candidates of visual verb from video description database and frequency of verbs. Based on the derived visual verb candidates, we have defined and constructed ActionNet schema and database. According to expanding usability of ActionNet database on open environment, we expect to contribute in the development of video understanding technologies.

A Study on the Implementation of Coexistent Reality Technology for Ship Outfitting Inspection (선박 의장 검사를 위한 공존현실 기술 적용에 관한 연구)

  • Ha, Yeon-Chul;Kim, Jin-Woo;Kim, Goo;Shin, Hyun-Shil
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.1
    • /
    • pp.13-20
    • /
    • 2020
  • In shipyards, internal materials are assembled after designing and manufacturing each ship's block. Internal material assembly means the installation of parts and equipment except ship's body. In this process, if the assembly of pipes and equipment existing in the block is not done correctly during the assembly between blocks, this causes a lot of costs. In addition, even if the assembly of the internal materials already completed, the production efficiency of the ship is reduced due to rework when problems such as space arrangement of the internal materials occurs. Therefore, this study introduces space arrangement and inspection system before and after hull outfitting work based on coexistence reality technology using 3D design drawing to solve these problems. The various coexistence reality algorithms and inspection systems developed and introduced in this study are based on AR service, which has never been introduced in Korea. So it will be widely applicable to various manufacturing industries using design drawings such as automobiles and architectures as well as ship building process.

Analysis of the Precedence of Stock Price Variables Using Cultural Content Big Data (문화콘텐츠 빅데이터를 이용한 주가 변수 선행성 분석)

  • Ryu, Jae Pil;Lee, Ji Young;Jeong, Jeong Young
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.4
    • /
    • pp.222-230
    • /
    • 2022
  • Recently, Korea's cultural content industry is developing, and behind the growing recognition around the world is the real-time sharing service of global network users due to the development of science and technology. In particular, in the case of YouTube, its propagation power is fast and powerful in that everyone, not limited users, can become potential video providers. As more than 80% of mobile phone users are using YouTube in Korea, YouTube's information means that psychological factors of users are reflected. For example, information such as the number of video views, likes, and comments of a channel with a specific personality shows a measure of the channel's personality interest. This is highly related to the fact that information such as the frequency of keyword search on portal sites is closely related to the stock market economically and psychologically. Therefore, in this study, YouTube information from a representative entertainment company is collected through a crawling algorithm and analyzed for the causal relationship with major variables related to stock prices. This study is considered meaningful in that it conducted research by combining cultural content, IT, and financial fields in accordance with the era of the fourth industry.

Digital Twin-Based Communication Optimization Method for Mission Validation of Swarm Robot (군집 로봇의 임무 검증 지원을 위한 디지털 트윈 기반 통신 최적화 기법)

  • Gwanhyeok, Kim;Hanjin, Kim;Junhyung, Kwon;Beomsu, Ha;Seok Haeng, Huh;Jee Hoon, Koo;Ho Jung, Sohn;Won-Tae, Kim
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.1
    • /
    • pp.9-16
    • /
    • 2023
  • Robots are expected to expand their scope of application to the military field and take on important missions such as surveillance and enemy detection in the coming future warfare. Swarm robots can perform tasks that are difficult or time-consuming for a single robot to be performed more efficiently due to the advantage of having multiple robots. Swarm robots require mutual recognition and collaboration. So they send and receive vast amounts of data, making it increasingly difficult to verify SW. Hardware-in-the-loop simulation used to increase the reliability of mission verification enables SW verification of complex swarm robots, but the amount of verification data exchanged between the HILS device and the simulator increases exponentially according to the number of systems to be verified. So communication overload may occur. In this paper, we propose a digital twin-based communication optimization technique to solve the communication overload problem that occurs in mission verification of swarm robots. Under the proposed Digital Twin based Multi HILS Framework, Network DT can efficiently allocate network resources to each robot according to the mission scenario through the Network Controller algorithm, and can satisfy all sensor generation rates required by individual robots participating in the group. In addition, as a result of an experiment on packet loss rate, it was possible to reduce the packet loss rate from 15.7% to 0.2%.

Wafer bin map failure pattern recognition using hierarchical clustering (계층적 군집분석을 이용한 반도체 웨이퍼의 불량 및 불량 패턴 탐지)

  • Jeong, Joowon;Jung, Yoonsuh
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.3
    • /
    • pp.407-419
    • /
    • 2022
  • The semiconductor fabrication process is complex and time-consuming. There are sometimes errors in the process, which results in defective die on the wafer bin map (WBM). We can detect the faulty WBM by finding some patterns caused by dies. When one manually seeks the failure on WBM, it takes a long time due to the enormous number of WBMs. We suggest a two-step approach to discover the probable pattern on the WBMs in this paper. The first step is to separate the normal WBMs from the defective WBMs. We adapt a hierarchical clustering for de-noising, which nicely performs this work by wisely tuning the number of minimum points and the cutting height. Once declared as a faulty WBM, then it moves to the next step. In the second step, we classify the patterns among the defective WBMs. For this purpose, we extract features from the WBM. Then machine learning algorithm classifies the pattern. We use a real WBM data set (WM-811K) released by Taiwan semiconductor manufacturing company.

Analysis of articles on water quality accidents in the water distribution networks using big data topic modelling and sentiment analysis (빅데이터 토픽모델링과 감성분석을 활용한 물공급과정에서의 수질사고 기사 분석)

  • Hong, Sung-Jin;Yoo, Do-Guen
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1235-1249
    • /
    • 2022
  • This study applied the web crawling technique for extracting big data news on water quality accidents in the water supply system and presented the algorithm in a procedural way to obtain accurate water quality accident news. In addition, in the case of a large-scale water quality accident, development patterns such as accident recognition, accident spread, accident response, and accident resolution appear according to the occurrence of an accident. That is, the analysis of the development of water quality accidents through key keywords and sentiment analysis for each stage was carried out in detail based on case studies, and the meanings were analyzed and derived. The proposed methodology was applied to the larval accident period of Incheon Metropolitan City in 2020 and analyzed. As a result, in a situation where the disclosure of information that directly affects consumers, such as water quality accidents, is restricted, the tone of news articles and media reports about water quality accidents with long-term damage in the event of an accident and the degree of consumer pride clearly change over time. could check This suggests the need to prepare consumer-centered policies to increase consumer positivity, although rapid restoration of facilities is very important for the development of water quality accidents from the supplier's point of view.

The Study of Digitalization of Analog Gauge using Image Processing (이미지 처리를 이용한 아날로그 게이지 디지털화에 관한 연구)

  • Seon-Deok Kim;Cherl-O Bae;Kyung-Min Park;Jae-Hoon Jee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.4
    • /
    • pp.389-394
    • /
    • 2023
  • In recent years, use of machine automation is rising in the industry. Ships also obtain machine condition information from sensor as digital information. However, on ships, crew members regularly surveil the engine room to check the condition of equipment and their information through analog gauges. This is a time-consuming and tedious process and poses safety risks to the crew while on surveillance. To address this, engine room surveillance using an autonomous mobile robot is being actively explored as a solution because it can reduce time, costs, and the safety risks for crew. Analog gauge reading using an autonomous mobile robot requires digitization for the robot to recognize the gauge value. In this study, image processing techniques were applied to achieve this. Analog gauge images were subjected to image preprocessing to remove noise and highlight their features. The center point, indicator point, minimum value and maximum value of the analog gauge were detected through image processing. Through the straight line connecting these points, the angle from the minimum value to the maximum value and the angle from the minimum value to indicator point were obtained. The obtained angle is digitized as the value currently indicated by the analog gauge through a formula. It was confirmed from the experiments that the digitization of the analog gauge using image processing was successful, indicating the equivalent current value shown by the gauge. When applied to surveillance robots, this algorithm can minimize safety risks and time and opportunity costs of crew members for engine room surveillance.

Building Dataset of Sensor-only Facilities for Autonomous Cooperative Driving

  • Hyung Lee;Chulwoo Park;Handong Lee;Junhyuk Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.21-30
    • /
    • 2024
  • In this paper, we propose a method to build a sample dataset of the features of eight sensor-only facilities built as infrastructure for autonomous cooperative driving. The feature extracted from point cloud data acquired by LiDAR and build them into the sample dataset for recognizing the facilities. In order to build the dataset, eight sensor-only facilities with high-brightness reflector sheets and a sensor acquisition system were developed. To extract the features of facilities located within a certain measurement distance from the acquired point cloud data, a cylindrical projection method was applied to the extracted points after applying DBSCAN method for points and then a modified OTSU method for reflected intensity. Coordinates of 3D points, projected coordinates of 2D, and reflection intensity were set as the features of the facility, and the dataset was built along with labels. In order to check the effectiveness of the facility dataset built based on LiDAR data, a common CNN model was selected and tested after training, showing an accuracy of about 90% or more, confirming the possibility of facility recognition. Through continuous experiments, we will improve the feature extraction algorithm for building the proposed dataset and improve its performance, and develop a dedicated model for recognizing sensor-only facilities for autonomous cooperative driving.

A study on the design of an efficient hardware and software mixed-mode image processing system for detecting patient movement (환자움직임 감지를 위한 효율적인 하드웨어 및 소프트웨어 혼성 모드 영상처리시스템설계에 관한 연구)

  • Seungmin Jung;Euisung Jung;Myeonghwan Kim
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.29-37
    • /
    • 2024
  • In this paper, we propose an efficient image processing system to detect and track the movement of specific objects such as patients. The proposed system extracts the outline area of an object from a binarized difference image by applying a thinning algorithm that enables more precise detection compared to previous algorithms and is advantageous for mixed-mode design. The binarization and thinning steps, which require a lot of computation, are designed based on RTL (Register Transfer Level) and replaced with optimized hardware blocks through logic circuit synthesis. The designed binarization and thinning block was synthesized into a logic circuit using the standard 180n CMOS library and its operation was verified through simulation. To compare software-based performance, performance analysis of binary and thinning operations was also performed by applying sample images with 640 × 360 resolution in a 32-bit FPGA embedded system environment. As a result of verification, it was confirmed that the mixed-mode design can improve the processing speed by 93.8% in the binary and thinning stages compared to the previous software-only processing speed. The proposed mixed-mode system for object recognition is expected to be able to efficiently monitor patient movements even in an edge computing environment where artificial intelligence networks are not applied.