• Title/Summary/Keyword: recognition algorithm

Search Result 3,560, Processing Time 0.038 seconds

Implementation of the SIMT based Image Signal Processor for the Image Processing (영상처리를 위한 SIMT 기반 Image Signal Processor 구현)

  • Hwang, Yun-Seop;Jeon, Hee-Kyeong;Lee, Kwan-ho;Lee, Kwang-yeob
    • Journal of IKEEE
    • /
    • v.20 no.1
    • /
    • pp.89-93
    • /
    • 2016
  • In this paper, we proposed SIMT based Image Signal Processor which can apply various image preprocessing algorithms and allow parallel processing of application programs such as image recognition. Conventional ISP has the hard-wired image enhancement algorithm of which the processing speed is fast, but there was difficult to optimize performance depending on various image processing algorithms. The proposed ISP improved the processing time applying SIMT architecture and processed a variety of image processing algorithms as an instruction based processor. We used Xilinx Virtex-7 board and the processing time compared to cell multicore processor, ARM Cortex-A9, ARM Cortex-A15 was reduced by about 71 percent, 63 percent and 33 percent, respectively.

Effective Image Segmentation using a Locally Weighted Fuzzy C-Means Clustering (지역 가중치 적용 퍼지 클러스터링을 이용한 효과적인 이미지 분할)

  • Alamgir, Nyma;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.83-93
    • /
    • 2012
  • This paper proposes an image segmentation framework that modifies the objective function of Fuzzy C-Means (FCM) to improve the performance and computational efficiency of the conventional FCM-based image segmentation. The proposed image segmentation framework includes a locally weighted fuzzy c-means (LWFCM) algorithm that takes into account the influence of neighboring pixels on the center pixel by assigning weights to the neighbors. Distance between a center pixel and a neighboring pixels are calculated within a window and these are basis for determining weights to indicate the importance of the memberships as well as to improve the clustering performance. We analyzed the segmentation performance of the proposed method by utilizing four eminent cluster validity functions such as partition coefficient ($V_{pc}$), partition entropy ($V_{pe}$), Xie-Bdni function ($V_{xb}$) and Fukuyama-Sugeno function ($V_{fs}$). Experimental results show that the proposed LWFCM outperforms other FCM algorithms (FCM, modified FCM, and spatial FCM, FCM with locally weighted information, fast generation FCM) in the cluster validity functions as well as both compactness and separation.

Face Recognition on complex backgrounds using Neural Network (복잡한 배경에서 신경망을 이용한 얼굴인식)

  • Han, Jun-Hee;Nam, Kee-Hwan;Park, Ho-Sik;Lee, Young-Sik;Jung, Yeon-Gil;Ra, Sang-Dong;Bae, Cheol-Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.1149-1152
    • /
    • 2005
  • Detecting faces in images with complex backgrounds is a difficult task. Our approach, which obtains state of the art results, is based on a generative neural network model: the Constrained Generative Model (CGM). To detect side view faces and to decrease the number of false alarms, a conditional mixture of networks is used. To decrease the computational time cost, a fast search algorithm is proposed. The level of performance reached, in terms of detection accuracy and processing time, allows to apply this detector to a real word application: the indexation of face images on the Web.

  • PDF

Container Image Recognition using ART2-based Self-Organizing Supervised Learning Algorithm (ART2 기반 자가 생성 지도 학습 알고리즘을 이용한 컨테이너 인식 시스템)

  • Jung, Byung-Hee;Kim, Jae-Yong;Cho, Jae-Hyun;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.393-398
    • /
    • 2005
  • 본 논문에서는 ART2 기반 자가 생성 지도 학습 알고리즘을 이용한 운송 컨테이너 식별자 인식 시스템을 제안한다. 일반적으로 운송 컨테이너의 식별자들은 글자의 색이 검정색 또는 흰색으로 이루어져 있는 특징이 있다. 이러한 특성을 고려하여 원 컨테이너 영상에 대해 검은색과 흰색을 제외한 모든 부분을 잡음으로 처리하기 위해 퍼지를 이용한 잡은 판단 방법을 적용하여 식별자 영역과 잡음을 구별한다. 식별자 영역을 제외한 잡음 영역을 전체 영상의 평균 픽셀값으로 대체시킨다. 그리고 Sobel 마스크를 이용하여 에지를 검출하고, 추출된 에지를 이용하여 수직 블록과 수평 블록을 검출하여 컨테이너의 식별자 영역을 추출하고 이진화한다. 이진화된 식별자 영역에 대해 검정색의 빈도수를 이용하여 흰바탕과 민바탕을 구분하고 8방향 윤곽선 추적 알고리즘을 적용하여 개별 식별자를 추출한다. 개별 식별자 인식을 위해 ART2 기반 자가 생성 지도 학습 알고리즘은 입력층과 은닉층 사이에 ART2를 적용하여 은닉층의 노드를 생성하고, 은닉층과 출력층 사이에 일반화된 델타 학습 방법과 Delta-bar-Delta 알고리즘을 적용하여 학습 성능을 개선한다. 실제 컨테이너 영상을 대상으로 실험한 결과, 기존의 식별자 추출 방법보다 제안된 식별자 추출 방법이 개선되었다. 그리고 기존의 식별자 인식 알고리즘보다 제안된 ART2 기반 자가 생성 지도 학습 알고리즘이 식별자의 학습 및 인식에 있어서 우수한 성능이 있음을 확인하였다.

  • PDF

Image Restoration for Edge Preserving in Mixed Noise Environment (복합잡음 환경에서 에지 보존을 위한 영상복원)

  • Long, Xu;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.727-734
    • /
    • 2014
  • Digital processing technologies are being studied in various areas of image compression, recognition and recovery. However, image deterioration still occurs due to the noises in the process of image acquisition, storage and transmission. Generally in the typical noises which are included in the images, there are Gaussian noise and the mixed noise where the Gaussian noise and impulse noise are overlapped and in order to remove these noises, various researches are being executed. In order to preserve the edge and effectively remove mixed noises, image recovery filter algorithm was suggested in this study which sets and processes the adaptive weight using the median values and average values after noise judgment. Additionally, existing methods were compared through simulations and PSNR(peak signal to noise ratio) was used as a judgment standard.

Design of Pedestrian Detection Algorithm Using Feature Data in Multiple Pedestrian Tracking Process (다수의 보행자 추적과정에서 특징정보를 이용한 보행자 검출 알고리즘 설계)

  • Han, Myung-ho;Ryu, Chang-ju;Lee, Sang-duck;Han, Seung-jo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.4
    • /
    • pp.641-647
    • /
    • 2018
  • Recently, CCTV, which provides video information for multiple purposes, has been transformed into an intelligent, and the range of automation applications increased using the computer vision. A highly reliable detection method must be performed for accurate recognition of pedestrians and vehicles and various methods are being studied for this purpose. In such an object detection system. In this paper, we propose a method to detect a large number of pedestrians by acquiring three characteristic information that features of color information using HSI, motion vector information and shaping information using HOG feature information of a pedestrian in a situation where a large number of pedestrians are moving. The proposed method distinguishes each pedestrian while minimizing the failure or confusion of pedestrian detection and tracking. Also when pedestrians approach or overlap, pedestrians are identified and detected using stored frame feature data.

Improving the Performance of Korean Text Chunking by Machine learning Approaches based on Feature Set Selection (자질집합선택 기반의 기계학습을 통한 한국어 기본구 인식의 성능향상)

  • Hwang, Young-Sook;Chung, Hoo-jung;Park, So-Young;Kwak, Young-Jae;Rim, Hae-Chang
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.9
    • /
    • pp.654-668
    • /
    • 2002
  • In this paper, we present an empirical study for improving the Korean text chunking based on machine learning and feature set selection approaches. We focus on two issues: the problem of selecting feature set for Korean chunking, and the problem of alleviating the data sparseness. To select a proper feature set, we use a heuristic method of searching through the space of feature sets using the estimated performance from a machine learning algorithm as a measure of "incremental usefulness" of a particular feature set. Besides, for smoothing the data sparseness, we suggest a method of using a general part-of-speech tag set and selective lexical information under the consideration of Korean language characteristics. Experimental results showed that chunk tags and lexical information within a given context window are important features and spacing unit information is less important than others, which are independent on the machine teaming techniques. Furthermore, using the selective lexical information gives not only a smoothing effect but also the reduction of the feature space than using all of lexical information. Korean text chunking based on the memory-based learning and the decision tree learning with the selected feature space showed the performance of precision/recall of 90.99%/92.52%, and 93.39%/93.41% respectively.

A Study of Gate Control System Using RFID (RFID를 이용한 출입문 제어 시스템 연구)

  • Kang, Sung-Chul;Kim, Hyung-Chan;Doh, Yang-Hoi;Lee, Kwang-Man;Kim, Do-Hyeun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1505-1512
    • /
    • 2007
  • The RFID Technology (which is importantly used at the Ubiquitous environment) is attached to all of the units like the ID cards and then information on the units and units' environment is transferred and processed through the radio frequency. so it is the no touched recognition system. RFID Technology's research of the middle ware and wireless interface etc. is currently conducted and variously broaden like the industry of the distribution and logistics. This paper suggests that the gate control system which is based on RFID middle ware is realized to prevent the district and facility for security. The indication of this paper is that algorithm (which is to certificate Users' enterance through RFID EPC code) is proposed and realizes the user certification module, the control module of the gates' opening and closing, the maintenance module of the gate, the display module of coming and going information, test program ect. through RFID technology.

  • PDF

An Efficient Computation Method of Zernike Moments Using Symmetric Properties of the Basis Function (기저 함수의 대칭성을 이용한 저니키 모멘트의 효율적인 계산 방법)

  • 황선규;김회율
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.5
    • /
    • pp.563-569
    • /
    • 2004
  • A set of Zernike moments has been successfully used for object recognition or content-based image retrieval systems. Real time applications using Zernike moments, however, have been limited due to its complicated definition. Conventional methods to compute Zernike moments fast have focused mainly on the radial components of the moments. In this paper, utilizing symmetric/anti-symmetric properties of Zernike basis functions, we propose a fast and efficient method for Zernike moments. By reducing the number of operations to one quarter of the conventional methods in the proposed method, the computation time to generate Zernike basis functions was reduced to about 20% compared with conventional methods. In addition, the amount of memory required for efficient computation of the moments is also reduced to a quarter. We also showed that the algorithm can be extended to compute the similar classes of rotational moments, such as pseudo-Zernike moments, and ART descriptors in same manner.

Real-time Fault Diagnosis of Induction Motor Using Clustering and Radial Basis Function (클러스터링과 방사기저함수 네트워크를 이용한 실시간 유도전동기 고장진단)

  • Park, Jang-Hwan;Lee, Dae-Jong;Chun, Myung-Geun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.6
    • /
    • pp.55-62
    • /
    • 2006
  • For the fault diagnosis of three-phase induction motors, we construct a experimental unit and then develop a diagnosis algorithm based on pattern recognition. The experimental unit consists of machinery module for induction motor drive and data acquisition module to obtain the fault signal. As the first step for diagnosis procedure, preprocessing is performed to make the acquired current simplified and normalized. To simplify the data, three-phase current is transformed into the magnitude of Concordia vector. As the next step, feature extraction is performed by kernel principal component analysis(KPCA) and linear discriminant analysis(LDA). Finally, we used the classifier based on radial basis function(RBF) network. To show the effectiveness, the proposed diagnostic system has been intensively tested with the various data acquired under different electrical and mechanical faults with varying load.